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Abstract. Wave based control method is one of the vibration control method for flexible 
structure. The method can suppress the vibration by reducing the development of standing 
wave, and is generally applied to a lumped system, but it is difficult to apply them to 
continuous systems. Therefore, there is room for further research into the application of them 
to continuous systems and consequently this paper proposes a method to apply wave control 
method to continuous system, and a flexible link manipulator is introduced as a controlled 
object. In order to derive the mathematical model for controller design, i.e. the model to which 
wave based control method is applied, Absolute Nodal Coordinate Formulation (ANCF) which 
is one of the nonlinear finite element method is employed. In order to derive the controller by 
wave based control method, a lumped system is derived from some manipulation and 
coordinate transformation of ANCF model which is derived for flexible link manipulator and 
the wave based method is applied to the derived lumped model. The validity of the proposed 
method is demonstrated by numerical simulation and applicability of the proposed method is 
discussed. 

1.  Introduction 
In recent years, space structure has been made of flexible element. The behavior of the flexible object 
is very complex and oscillatory. Therefore, study on vibration problem of flexible body is important. 
The control method based on mode analysis is one of the general approaches to vibration problems. 
However, it is not appropriate to apply such a control method to a flexible object which has 
nonlinearity. Conventionally, wave control method[1][2] has been studied as methods to solve these 
problems. In the wave control method, the traveling wave in the structure is canceled by the controller 
in order to avoid the generation of standing wave and consequently vibration of the structure is 
damped. Since the traveling wave is controlled, the wave control method can suppress wave from an 
earlier stage before standing wave arise. Therefore, it can be expected to damp more rapidly than the 
other conventional control method based on mode analysis. However, there are few cases where the 
wave control method has been applied to general distributed parameter systems such as flexible 
objects. 

Analysis including large deformation and large rotation is very important for vibration control of 
flexible object. Absolute Nodal Coordinate Formulation (ANCF) proposed by Shabana[3] is one of the 
analysis methods of flexible object which is subject to large deformation and large rotation and is a 
kind of nonlinear finite element method. The nodal coordinates are represented by absolute coordinate 
in ANCF and such a representation of coordinate leads to constant mass matrix and nonlinear stiffness 
matrix, which is the typical feature of ANCF. A lot of study on ANCF have focused on the 
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improvement of analytical ability, however there is few study on the controller design by ANCF 
model.  

The purpose of this paper is to propose a controller design method for vibration control of flexible 
structure by applying wave control method to ANCF beam model. Furthermore, the proposed method 
is validated by numerical analysis. 

This paper is composed as follows. Section 2 introduces a controlled object and the mathematical 
model for the controlled object is derived. In Section 3, conventional wave control method is 
introduced briefly. Section 4 proposes a method to control the flexible structure by wave control 
method. In Section 5, numerical analysis shows the validity of our proposed method and conclusion is 
given in Section 6. 

 

2. Model of flexible object 

2.1.  Controlled object 
A flexible beam is introduced as the controlled object simulating a planar single flexible link robot as 
Figure 1 indicates. The link is uniform, one end of the link is fixed by pined support and control torque 
is applied to that end and the other end is free. In addition, internal damping of the link, air drag, 
influence of gravity and friction force on the joint are neglected. 

2.2.  Formulation of the controlled object by ANCF 
The derivation of equation of motion by ANCF beam is shown below briefly. Flexible link is divided 
into N element and motion of equation of each element is formulated by ANCF. Figure 2 shows the i-
th elements. The nodal coordinate of  i-th element is given as:  
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where 1st and 3rd elements are global position of one end in the direction of X and Y respectively,   
5th and 7th elements are global position of the other end in the direction of X and Y respectively. 
Furthermore, 2nd and 4th elements are global slopes of one end in the direction of X and Y 
respectively, and 6th and 8th elements are global slopes of the other end in the direction of X and Y 
respectively. Then, position vector of arbitrary point on the beam ir  is as follows. 
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Where, iS  is the shape function for the i-th element. Using definition of position of the point on the 
beam given by equation (2), kinetic energy, potential energy and virtual work are derived. 
Furthermore, applying Lagrange’s equation to those obtained energy and virtual work, the equation of 
motion for i-th element are given by  

iiliitiii QeKeKeM  )()(     (3) 
where iM  is mass matrix for i-th element, tiK  is bending stiffness matrix for i-th element and liK  is 
axial stiffness matrix for i-th element. Deriving constraint equation which describes the relationships 
between each element and deriving the Jacobian and the acceleration equation, a differential equation 
is obtained as 
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where M  is block mass matrix which consists of iM , q  is generalized coordinate vector which 
consists of nodal coordinates of each element, qC  is the Jacobian obtained by partially differentiating 

1101Preprint of TSME-ICoME 2017 Proceedings



 
 
 
 
 
 

the constraint equation with a generalized coordinate vector, λ  is Lagrange multiplier, EQ  is 
generalized external force. In addition, Newton Euler equation as shown in equation (5) is obtained in 
order to derive the control design model 

ininlinintininin QqKqKqM  )()(     (5) 
where the subscript "in" indicates that it is related to independent coordinates.  

 
 

 
Figure 1. Controlled object.  Figure 2. i-th element of ANCF. 

2.  Wave control method 

2.1.  Model of wave control 
In our study, we employ the wave control method proposed by O’Connor[2]. In this model, the control 
object is expressed lumped system composed of springs and lumped masses. The Figure 3 indicates 
the wave control model. im , ik , ix  are mass, spring constant and displacement of i-th, respectively. 
Note that 0x  and 0k  are virtual displacement and spring constant for the sake of expression of control 
input 0f . Then, control input 0f  can be given as 

  0100 kxxf      (6) 
The wave control model assumes that the displacement of each mass ix  is separated into two 

traveling wave components. One is component ia  which travels rightward, the other is ib  which 
travels leftward and  iii bax   is satisfied. As Figure 4 shows, the wave propagation is given by 
traveling wave components iA  and iB  which consists of iX , and transfer functions iG , iH  and F . 
Note that iX , iA , iB  are ix , ia , ib  in the Laplace domain. Then, each traveling wave has following 
relationships:  

1 iii AGA      (7) 

1 iii BHB      (8) 

nn FAB       (9) 
 

Note that Equation (7), (8) and (9) corresponds to the relation of the rightward propagation, the 
leftward propagation, and the reflection at the boundary, respectively. O’Connor has mentioned in the 
reference [2] that the transfer functions iG  and iH  can be approximated to second-order system and 
we also employ second-order system in this study as  
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Furthermore, considering the boundary condition at the right end in Figure 3, i.e. free end, the transfer 
function F  is given as unity.  

 
Figure 3. Model of the wave control method.

 

Figure 4. Block diagram of the wave control method. 
 
 

2.2.  Method of wave control 
In the wave control method, vibration control of structure is performed by applying control input so as 
to cancel the traveling waves. If reflection of traveling waves can be avoided at the boundary, the 
standing waves are not generated, that is, if the reflected wave 0A  at the left end in Figure 3 can be 
cancelled, vibration does not continue, in other words, vibration is suppressed. In order to achieve 
cancellation of the reflected wave at left end, the incident wave 0B  to the boundary at left end should 
be measured so as to derive the control input given as  

200 refXBX       (12) 

where refX  is reference displacement and incident wave 0B  to the boundary is given by 
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3. Application of wave control method to flexible structure 
The model of controlled object is different from the model used in wave control method, therefore the 
wave control method cannot be directly applied to model of control object. In this section, we propose 
the process of applying the wave control method to the model of our controlled object. In our proposed 
method, we utilize the coordinate transformation which transforms the coordinates of wave control 
model to the coordinates of ANCF model. On the other hand, Joseph has also proposed the method 
which utilizes the diagonalized model[4] and systematic process is developed in that study. But in the 
context of controller design freedom, we employ numerical method as shown later. 

3.1. Controller design model 
In order to design controller, controller design model is derived from Equation (5). In general, 
longitudinal deformation is quite small compared to the transverse deformation, then the influence of 
longitudinal deformation on the behaviour of the system can be neglected. Furthermore, as is clear 
from structure of the motion of equation given by Equation (5), expression of motion becomes 
redundant if longitudinal deformation is neglected. That is, expression become redundant. Therefore, 
we employ the motion of equation for Y directions for controller design as 
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yytyyy QqKqM  ,    (14) 
which process is also used in another study[5]. The number of nodal coordinate of Y direction about 
ANCF beam consisting of N elements is 2N+1. The number of mass (number of DOF) of the lumped 
system for wave controller design need to be equal to the number of DOF of ANCF beam model. 
Therefore, the lumped system transformed from the ANCF beam model has to consist of 2N+1 masses 
and 2N springs. 

3.2. Determination of unknown parameters 
Because parameters of the lumped system is generally unknown, it is difficult to directly apply 
coordinate transformation to ANCF model in order to derive the corresponding lumped system. 
Therefore, applying diagonalization to the equation of motion of each model, both diagonalized model 
is used as intermediate model for coordinate transformation.  
 

Equation (15) is the equation of motion of the lumped system to which the wave control method is 
applied. 

www QxKxM       (15) 
where wM  is the mass matrix, wK is the stiffness matrix, wQ  is the external force matrix. The 
equation of motion of lumped system can be diagonalized by solving the generalized eigenvalue 
problem of Equation (15), and the diagonalized equation of motion is given by 

w
T

w

Nw

w

w

Nw

w

w

k

k

k

m

m

m

QTxx 











































 )12(

2

1

)12(

2

1

0

0

0

0





 (16) 

where wT  is coordinate transformation matrix in which eigenvectors of the system given by 
Equation (15) are aligned, xTx w . Similarly, the equation of motion of ANCF model can be 
diagonalized by solving the generalized eigenvalue problem of Equation (14). 
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where cT  is coordinate transformation matrix in which eigenvectors of the system given by Equation 
(14) are aligned, ycy qTq  . Unknown parameters of lumped system are determined by numerical 
search so that the diagonal elements of equations (16) and (17) coincide with each other. Applying 
coordinate transformation by obtained two matrices wT  and cT , mass and stiffness matrix for lumped 
system is derived as  

1 wcy
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Note that the number of unknown parameters is 4N+1, which is larger than the conditions that the 
unknown parameters have to satisfy, and therefore additional conditions can be added to the parameter 
determination. In other words, there is degree of freedom in parameter determination. This degree of 
freedom is utilized in considering the external force term as described next section. 
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3.3. Conditions on external force term 
Following equation indicates the coordinate transformation of the external force term.  
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The components of the equation (20) are given by the equations (21) and (22). 
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The elements of external force term of controlled object is zero except for first element as Equation 
(21) shows, however external force term of the transformed system from lamped system may has non-
zero value in the elements except for first element as Equation (22) shows. In order to satisfy the 
equation (20), it is possible to reduce the influence of the control force which does not exist in the 
original system by using the degree of freedom as described above and introducing the following 
evaluation value 
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Equation (23) indicates that the smaller value corresponds to smaller value of the elements in the 
external force except for first element. Therefore, minimization of Equation (23) and numerical search 
for determination of  wT  and cT are carried out simultaneously. 

 

4. Simulation 
The proposed method described in Chapter 4 was validated by numerical analysis. In the numerical 
analysis, link is moved by control torque from the initial angle (0 degree) to the target angle (10 
degree). Parameters of the link is shown in Table. 1. The control input for the system is derived by 
using Equation (12) and (20). In numerical simulation, the value of the element of external force 
except for first element are approximated by 0. 
 

Table 1. Parameters for numerical analysis 
Young’s modulus of the flexible beam [GPa] 70

Density of the flexible beam [kg/m3] 2700 
Length of the flexible beam [m] 1

Thickness of the flexible beam [m] 0.005 
Width of the flexible beam [m] 0.01 

Element number of ANCF model 1
 
 
In order to show the validity of the proposed method based on wave control method, control result 

by the proposed method was compared with the control result by a linear quadratic regulator (LQR). 
Figure 5 shows time history of tip displacement in the Y direction and two results are shown for 
comparison between the proposed method and LQR controller. As the results show, tip position 
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converges to the target position by the proposed controller. Furthermore, the results by the proposed 
controller shows faster convergence to the target position than that by LQR. 

 

 
Figure 5. Comparison by control method. 

 

5. Conclusion 
In this paper, we proposed a method of applying wave control method to the flexible structure by 
using coordinate transformation, moreover we demonstrated the validity of the proposed method by 
numerical analysis. As the result of numerical analysis, the proposed method shows faster 
convergence to the target position, and validity of the proposed method is confirmed. 
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