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Abstract. The optimum design of contra-rotating propellers (CRPs) is needed to achieve the 
good improvement on ship propulsion efficiency. In this study, the lifting line theory and 
calculus of variation method are used to find an optimum CRPs blade profile under given 
condition. In real situation, the size of slipstream behind propeller decreases in order to 
conserve the mass flow rate as the velocity increases. This affects the induced velocities on 
propeller especially in CRPs where the interaction between two propellers is highly concerned. 
Therefore, the effect of slipstream contraction is included in this study. Equations obtained 
from calculus of variation method are solved numerically by using MATLAB. The optimum 
blade profile resulted from calculation is drawn and simulated in CFD program (ANSYS 
Fluent) to validate the obtained results. 

1.  Introduction 
The design procedure of CRPs was developed from single propeller design. The analytic method for 
studying the propeller began with actuator disk theory, then blade element theory, lifting line, and 
lifting surface theory were developed consequently. Lerbs[1] studied the single propeller by using the 
lifting line theory and used the Betz condition and normal condition to find the optimum propeller’s 
design. Lerbs[2] also applied the design method of single propeller for CRPs design by neglecting 
mutual-induced velocity that caused by the interaction between two propellers. He then used 
correction factors to correct the result later. Gunsteren[3] also used the lifting line theory to design the 
CRPs but assumed that the average value of mutual-induced velocities distributing along the blade is 
equal to the average mutual-induced velocity that determined from the momentum theory. Caster and 
LeFone[4] made the computer program for designing CRPs based on lifting line theory while mutual-
induced velocity in program was obtained from Kerwin’s field point program which is based on lifting 
surface theory. Corney[5] studied the method to find the optimum design for various types of ship 
propulsion including CRPs by applying the calculus of variation method with the lifting line theory. 
Laskos[6] studied optimum CRPs design by using the lifting line theory and calculus of variation 
method from Corney’s study. In Laskos’ study, the aft propeller’s diameter was set to equal to the fore 
propeller’s diameter and assumed that there was no slipstream contraction in the flow occurred behind 
each propeller. In this study, a further investigation for optimum CRPs from Laskos’s study is done by 
including slipstream contraction effect which affects not only self and mutual-induced velocities but 
also the loads on propeller’s blade itself. To simplify the calculation, the viscous effect is neglected. In 
order to recover the rotational loss in slipstream behind the fore propeller, the aft propeller’s diameter 
is varied to correspond to the size of slipstream contraction during calculation. The slipstream 
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contraction model used in this study is obtained from Hoshino’s study[7] which used LVD to measure 
the slipstream radius of single propeller in open water test. Results from calculation which are the 
circulation distributions of two propellers are then used to design the actual propeller’ blade profiles 
by following Abbot and Doenhoff’s study[8]. Obtained CRPs are drawn and simulated by using CFD 
program; Ansys FLUENT to verify calculation results. 

 

2.  Background theory 
2.1 Lifting line theory 
Each blade of propeller is replaced by straight line called lifting line in order to determine the 
propeller’s performance. Along this lifting line, there are circulations distributing on it called bound 
vortex () which represent loads that occur on each blade sections. The variation of bound vortex 
circulation causes the free trailing vortex (f) shed in downstream. Its direction must align with the 
direction of flow velocity at the point that it leaves the lifting line. The shape of free trailing vortex 
line is like helix line and extends to infinity as shown in figure 1. The angle between free trailing 
vortex line and plane that perpendicular to rotational axis is called the pitch angle (0)    

According to Biot-Savart law, the bound and free trailing vortices cause induced velocity at any 
point in the flow field. The induced velocity at each point on lifting line with the corresponding bound 
vortex is used to determine thrust and torque on that lifting line by using Kutta-Joukowski’s theorem. 

In order to apply the numerical method, the lifting line of each propeller is divided equally into 
finite elements as shown in figure 1. Each element consists of one control point in the middle and one 
vortex points at each of two ends. Circulation of bound vortex is placed at each control point, while 
the point for free trailing vortex shed in downstream is placed at the vortex point.  

For contra-rotating propeller, induced velocities are separated into two parts, self-induced velocity 
and mutually-induced velocity in which one is induced by propeller itself and the other is by the other 
propeller in the CRPs set respectively. Following Kutta-Joukowski’s theorem and neglecting the 
viscous force, thrust and torque on each propeller are found in equation(1) and (2).   

T=Z෍ [Va+ua,sሺiሻ+ua,m(i)]  (i)r
n

i=1

 (1) 

Q=Z෍ [r(i)+ut,sሺiሻ+ut,m(i)]  (i)r(i)r
n

i=1

 (2) 

The self-induced velocity of propeller is determined by using Biot-Savart law as shown in 
equation(3) to (5). For free trailing vortex which has constant radius and constant pitch angle, the 
integral equation(4) can be solved by Wrench method[9] where equation is derived in algebraic form. 
Since the two propellers are moving relatively, the mutually-induced velocity varies with time, the 
mutually-induced velocity in calculation is the average value and can be found from Hough 
method[10]. 

uሬറሺ	iሻ=
1

4π
෍f(j)u'ሬሬറ(i,j)

m
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 (3) 
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0
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Figure1. Lifting line theory applied on propeller’s blade. 

2.2 Hub effect 
Neglecting the hub effect causes the circulation at the blade root is to be zero but in reality there is 
load occurred on the blade root which means that the circulation does not vanish. This is caused by the 
present of hub. Kerwin and Leopold[11] proposed circulation distributing inside hub and also free 
vortex shed in downstream like blade’s lifting line. The circulation is located at the image radius 
which is related to the radius of vortex point on lifting line as shown in equation(6). The pitch angle of 
hub free vortex line is found by equation(7). The circulation at image radius is equal to the circulation 
at correspond radius on lifting line but in opposite direction as shown in figure 2. The induced velocity 
caused by hub circulation is also found by Hough method[10]. 

rimage(i) = 
rh
2

rv(i)
 (6) 

tan image(i) = 
rv(i)

rimage(i)
tan 0(i) (7) 

 

 

 

 

 
 

Figure 2. Vortex circulation inside the hub.  
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2.3 Slipstream contraction 
Since flow that passes the propeller has cross section area decreased due to the increase in velocity, 
then the cross section is at first decreasing and becomes constant at a certain point downstream. The 
decrease of flow’s cross section area or slipstream contraction results in the direction of free trailing 
vortex and also the induced velocity. 

Owning to slipstream contraction, the free trailing vortex can be divided into two parts; transition 
and ultimate zone. The zone that cross section area starts decreasing in the beginning is called 
transition zone, and the zone that cross section area becomes constant is called ultimate zone. 
Hoshino[7] did propeller’s open water test at different advance ratios and used the LVD to measure 
the radius of free trailing vortex. The measured vortex radius was summarized and represented by 
equations. The Hoshino’s equations are applied to find free trailing vortex’s radius with the 
assumption that free trailing vortex had been shed from the lifting line and the pitch angle of free 
trailing vortex line is constant. The free trailing vortex’s radius is found from equation(8) to (14) 
where parameters in those equations can be explained by figure 3. 

rtሺn,zሻ=rሺnሻ-[rሺn)-rwሺnሻሿfr() (8) 

frሺሻ=ඥ+1.013-1.9202+1.2283-0.3214 (9) 

=
z

2.0R
 (10) 

rwt=ሾ0.887-0.125ሺ1- J p⁄ ሻሿR (11) 

rwh=0.1R (12) 

J=
πVa

R
 (13) 

p=2π0.7Rtan () (14) 

 
Figure 3. Slipstream contraction and  

parameters for calculating free trailing vortex’s radius. 
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The self and mutually-induced velocity due to free trailing vortex in the ultimate zone can be found 
by Wrench and Hough’s method respectively, whereas induced velocity due to free trailing vortex in 
transition zone cannot be found by these methods because its radius is not constant. However for 
transition zone occurred in finite distance, the induced velocity can be determined by applying the 
numerical method expressed in Biot-Savart law. 

2.4 Calculus of variation method 
According to Biot-Savart law and Jourovski’s theorem, thrust and torque that developed by contra-
rotating propellers depend on bound vortex circulation that distributed on both propellers. Finding 
appropriate circulation distribution definitely leads to a good result. 

Coney[5] showed the way to find optimum circulation of various types of ship propulsion by using 
the calculus of variation method. For contra-rotating propellers, the optimum circulations under 
minimum power condition at required thrust (Treq) can be found by setting proper auxiliary function as 
shown in equation(15) and by solving set of equations that obtained from differentiating auxiliary 
function with respect to unknown circulations and Lagrange multipliers as shown in equation (16) to 
(19). 

H=(1Q1+2Q2)+T൫T1+T2-Treq൯+Q(Q2-qQ1) (15) 

∂H
∂1(i)

=0  for i=1,2,…n1 (16) 

∂H
∂2(j)

=0  for j=1,2,…n2 (17) 

∂H
∂T

=0 (18) 

∂H
∂Q

=0 (19) 

 

3.  Calculation procedure 
To find the optimum circulation for contra-rotating propellers, relevant equations are programmed by 
using MATLAB program. The program is written under assumption that the free trailing vortex is 
shed from the lifting line and has constant pitch along the axial direction. The viscous force and hub 
drag are neglected and the incoming flow is uniform and in axial direction only. Since equations in 
calculus of variation method are non-linear, The Newton-Raphson iteration is applied to find optimum 
circulations by first assuming initial circulations and induced velocities as design parameters in the 
program. The radius of aft propeller is set to equal to radius of free trailing vortex tip at the distance 
where the aft propeller is located. The radius of aft propeller is varied due to induced velocity in each 
iteration as well as the shape of free trailing vortex lines. The iteration is continue until the circulation 
values are converge. The calculation procedure is shown in figure 4.  
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Figure 4. Flow Diagram showing the calculation procedure. 
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4.  CFD analysis 
4.1Drawing  propellers 
Propeller with airfoil cross section can provide a better thrust on it. This thrust depends on type of 
airfoil, chord length, flow velocity and the angle between flow velocity and chord line which is called 
angle of attack as shown in figure 5. 
 

 

 

 

  

Figure 5. The alignment of cross section airfoil.  

To draw the propeller’s shape from circulations, type of airfoil and chord length have to be chosen 
first, then  lift coefficient and angle of attack of each blade sections can be determined. The lift 
coefficient of any blade sections is found by substituting the circulation and the specified chord length 
at that blade section in equation(20). The lift coefficient is used to indicate the angle of attack by using 
the study of Abbott and Doenhoff[8] which shows the relation between the angle of attack and lift 
coefficient for various types of airfoil.  

CL(i)=
2ሺiሻ

cሺiሻ.V* (20) 

Chord distribution is developed according to the distribution in the study of Oossanen[12]  for each 
propeller with its developed area ratio at 0.5.  The NACA2412 airfoil profile is chosen for blade cross 
section profile. The blade of propeller developed has no rake and skew angle to avoid the complication 
in applying correction factors for angle of attack. 

 4.2 CFD simulation   
FLUENT Ansys program is chosen to simulate contra-rotating propellers that resulted from 
calculation. These propellers are simulated under same conditions in calculation procedure. The 
simulation uses sliding mesh method to determine results in each time step and k- model. The k- 
model gives good predicted results when compared with open water test results as shown in many 
studies such as Rhee and Joshi[13] and Kawamura[14]. The simulated model is shown in figure 6. The 
flow domain enclosing CRPs is modeled as cylinder shape with its radius and length equal to 1.3 and 
3.5 times the fore propeller’s radius respectively. Due to complex geometry of propeller, the 
unstructured mesh and refinement near blade and hub surfaces are applied. The flow is divided into 
two parts; one enclosed the fore propeller and the other covered both the aft propeller and the rest of 
flow domain. The interface surface of these two parts is in the middle between these two propellers 
where propellers and their hub start rotating in opposite direction. By this method, propellers can 
rotate relatively and move into a new position at each time step. Computational results at different 
relative positions in each time step can be obtained. The time step is chosen to give ten different 
relative positions between fore and aft propeller in each revolution.     

0 

0z 
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r+ut,s+ut,m 

V* 

464Preprint of TSME-ICoME 2017 Proceedings



 
 
 
 
 
 

 
Figure 6. The domain of simulated CRPs. 

5.  Calculation and CFD results 
The calculation is calculated at design parameters as shown in table 1. 

Table 1. the input design parameters 
parameter value 
Treq 3399.4236 [N] 
Va 2.05778 [m/s] 
R1 1 [m] 
1=2 6.4647 [rad/s] 
d 0.45 [m] 
Z1=Z2 4 
n1=n2 10 

From calculation, the optimum circulation distributions for each propeller are shown in figure 7.   

 
Figure 7. Optimum circulation distribution. 
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cases that with and without slipstream contraction is the circulation on fore propeller. For fore 
propeller under slipstream contraction, strengths of circulation near the blade root tend to increase, 
while those at the blade tip tend to decrease when compare with circulations resulted from without 
slipstream contraction. This is resulted from slipstream contraction which pushes free trailing vortex 
lines to move inside the blade root and intensifies the strength of circulation at that area. While the 
difference in aft propeller is much smaller.  

Thrust and torque obtained from calculation under with and without slipstream condition are shown 
in table 2. Both thrust and torque obtained are nearly the same because required thrust and torque 
ratios between fore and aft propeller are considered as constrained design parameters. 

Table 2. Thrust and torque from calculation under with and without slipstream contraction. 

 with slipstream contraction  w/o slipstream contraction 

 Fore propeller Aft propeller  Fore propeller Aft propeller 

Thrust [N] 1902 1497.2  1899.5 1498.1 

Torque [N.m] 699.56 559.64  697.13 557.70 

The optimum circulation distribution that obtained from calculation under slipstream contraction 
condition is used to determine the section lift coefficient and to draw the propellers’ blade profile. The 
drawn CRPs are simulated by FLUENT program as mentioned in section 4.2. The CRPs are calculated 
and simulated at condition mentioned in table 1 with two different rotational speeds, 6.4647 and 
5.3873 rad/s which correspond to advance ratio 1 and 1.2 respectively. The viscous force is then 
included into thrust and torque obtained from calculation as shown in table 3 and 4 in order to 
compare with results obtained from FLUENT. This viscous force on each blade section is determined 
from the study of Abbott and  Doenhoff[8].  

From table 3and 4, it shows that results obtained from calculation and FLUENT are different in 
term of value but are in the same order on fore and aft propeller. Consider as a single unit of CRPs, the 
total thrust and torque obtained from both calculation and FLUENT are also nearly same values as 
shown in table 5.  

Table 3. Average thrust on fore and aft propeller. 

Advance 
ratio 

 Thrust on fore propeller [N] Thrust on aft propeller [N] 

  Cal. Fluent %  Cal. Fluent % 

1   1,851.12 1,815.45 -1.93  1,456.18 1,541.07 3.22 

1.2   1,817.89 1,677.97 -7.70  1,498.28 1,457.78 -2.70 

 

Table 4. Average torque on fore and aft propeller. 

Advance 
ratio 

 Torque on fore propeller [N.m] Torque on aft propeller [N.m] 

  Cal. Fluent %  Cal. Fluent % 

1   749.79 773.93 5.83  595.43 636.22 6.85 

1.2   877.42 838.03 -4.49  700.88 694.40 -0.94 
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Table 5. Total thrust, total torque and efficiency of CRPs as a single unit. 

Advance 
ratio 

  Thrust [N]  Torque [N.m] 

  Cal. Fluent % Cal. Fluent % 

1  3,307.30 3,356.53 1.49 1,345.22 1,410.15 4.83 

1.2  3,316.18 3,135.75 -5.44 1,511.39 1,532.43 -2.91 
 

6.  Conclusion 
Optimum circulation distribution of CRPs is determined by using lifting line theory and calculus of 
variation method. The lifting line and circulation distributing on it represent propeller’s blade and the 
load occurring along the blade section. Equations are solved numerically by dividing the lifting line 
into finite elements with finite circulation strength. Induced velocities on each propeller are caused by 
its free trailing vortex in slipstream and the bound and free trailing vortex of the other propeller. Both 
vortex circulation strength and its direction affect the induced velocity and loads on propeller’s blade, 
thus slipstream contraction is applied to lifting line theory to define the direction of free trailing vortex 
line. By using calculus of variation method, optimum circulation distribution that resulted in required 
thrust and minimum power usage on CRPs is found. The calculation results show that optimum 
circulation distribution under slipstream contraction tends to increase in area around blade root and 
decrease in area around blade tip when compared with results that neglect slipstream contraction.  

The optimum circulation distribution under slipstream contraction condition is then used to 
determine the propeller’s blade profile. This optimum blade profile is drawn and simulated in CFD 
program (Ansys FLUENT) to validate the calculation results. Results obtained from FLUNT show that 
thrust and torque on fore propeller as well as thrust on aft propeller are close to calculation results. 
This shows that calculation procedure, which based on lifting line theory and calculus of variation 
method along with the slipstream contraction condition, can provide a good approximate optimum 
design for CRPs. However this study has to be studied further at different condition such as at 
different advance ratio and required thrust in order to investigate a range of use or limitation of the 
design procedure.  
 
nomenclature 
c chord length of blade cross section 
CL Lift coefficient on blade cross section 
d Distance between fore and aft propeller 
D Propeller diameter 
H Auxiliary function 
J Advance ratio 
dl Infinitesimal of vortex element 
n Number of lifting line’s element 
p pitch 
q torque ratio of aft propeller’s torque to fore propeller torque 
Q Torque 
R Propeller radius 
rc Radius at control point 
rh  Hub radius 
rimage  Image radius inside the hub 
rt Radius of free trailing vortex in transition zone 
rv Radius at vortex point 
rwh Radius of hub free trailing vortex in ultimate zone 
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rwt Radius of tip free trailing vortex in ultimate zone 
r Length of lifting line’s element 
S Distance from control point to vortex 
T Thrust 
Treq Required thrust 
u Induced velocity 
u' Induced velocity coefficient 
Va Axial velocity of incoming flow 
V*  Resultant velocity on blade cross section 
Z Blade number 
 Angle of attack 
0 Pitch angle of free trailing vortex line 
 Flow density 
 Bound vortex circulation 
 Rotational velocity 
T thrust Lagrange multiplier  
Q torque Lagrange multiplier   

Subscript 
1 The fore propellers 
2 The aft propellers 
r Radial direction 
t Tangential direction 
a Axial direction 
s Self-induced value 
m Mutually-induced value 
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