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Abstract 

In this paper, a theoretical method for determining the performance limitation of the Stewart 
platform operation with constraints on actuator speed and force is described. The limitation of platform in 
the generation of oscillating surge, sway, and heave motions as well as roll and pitch angular motions is 
investigated using the inverse kinematic equation of Stewart platform and a numerical method. The 
proposed method also accounts for both inertial mass and rotational mass of actuators in the 
determination of operating limitation. The implementation of the proposed method for an example 
platform is presented and the performance determination results are discussed.  
Keywords: Stewart Platform; Rigid Body Dynamic Simulation.  
 

1. Introduction 
Flight simulators are being widely used in the 

modern world.  Not only for training purposes, 
they are also used for evaluation and research 
purposes. The Stewart platform [1] is a classic 
mechanism widely used for a motion control 
device. Not only used in flight simulation, the 
platform was also utilized for other applications 
such as high precision positioning devices [2] and 
machining centers [3]. The advantages of this 
mechanism are on the wide range of motion, high 
rigidity, and accurate positioning capability.  

This work focuses on the use of Stewart 
platform mechanism to simulate basic flight 
maneuvers for hardware-in-the-loop (HITL) 
simulation purpose for autonomous aerial systems 
and flight instruments. The load (device/vehicle) 
is attached to the moving platform to simulate 
response due to flight maneuvers. In order to 
achieve accurate flight response, it is important to 
know the operation boundary of the platform 
hardware. A simple formula for computing 
actuating forces and speed for a Stewart platform 
presented in [4] assumed negligible actuator 
inertia in which sufficient accuracy could be 
obtained for the case of high load inertia. 
However, accounting of actuator inertia in 
dynamics model is required for control 
performance [5].  

In this work, we focuses on finding the 
operation limitation for Stewart platform with 
given actuator characteristics (actuating speed 
and force). The mathematical model and a brief 
derivation of the dynamic equations are presented 

in Section 2. Section 3 describes details of the 
proposed method for Stewart platform limitation 
determination. Section 4 presents the 
implementation of the proposed method in an 
example platform and result discussion. Finally, 
the conclusion is presented in Section 5. 

 
2. Mathematical Model 

The Stewart platform considered in this study 
is a 6-DOF parallel mechanism. A moving rigid 
platform is connected to a fixed base through six 
independent, identical linear actuators (Fig. 1). 
Spherical joints are applied to the connection at 
both end of each actuator. The change in the 
length of the linear actuators is the command 
variable used to control the motion of the moving 
platform. 
 

 
 

Fig. 1 schematic diagram of Stewart platform 
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Fig. 2 frame and variable definitions 

 
As shown in Fig. 2, the actuator element can 

be considered as position vector between the 
connecting point at the platform and that of the 
base. The desired position and orientation of the 
moving platform can be used to determine the 
required length of each actuator. The actuator 

element, iL


, can be obtained by   

i
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where L  is the actuator length, ŝ  is a unit 
vector representing the actuator direction, p


 is 

the position of the platform frame, ib


 is the 

position of the actuator-connecting point at the 

base, 
P

ir


is the position of the actuator-

connecting point of the platform in frame P, 
and ),,( R is the rotation matrix 
representing  the orientation of the platform in 
the form of the Euler angles (roll, pitch, and 
yaw). 
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where )(s and )(c indicate the sine and 
cosine functions, respectively, and 
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The motion of the actuator can be derived as 

P
P

iiii vrRsLsL
  ),,(ˆˆ   (4) 

where ωi is the angular motion of the actuator 
element, Pv


 is the velocity of the platform and 
P

irR
 ),,(  can be written as a function of 

the angular rate of Euler angle;  
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Eq. (4) can also be written as a function of the 
angular motion in the body coordinate system of 
the platform: 
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The relationship between the angular rate in 
the body axis and the rate of change of the roll, 
pitch, and yaw angles can be obtained from 
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and 
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From Eq. (6), the acceleration at the 
connection between actuator and the platform can 
be derived as 
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To obtain the actuating force, an actuator 

model is considered. The force and moment 
balance must be applied to the platform and 
actuators. Note that frictions in the actuators and 
their joints are neglected in this work. 

For the actuator model, the free body diagram 
shown in Fig. 3 is considered, the force balance 
of the actuating part (the upper part) is 
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and the moment balance about the joint at the 
base is   
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where iaF , is the force generated from the i-th 

actuator, iF is the actuating force on the 

platform, iTF , is the inertia force due to the 

actuator angular motion, 1I  and 2I are the 

moment of inertia of the actuator, 1l  and 

2l are the distance from the base joint to the 

center of the gravity of 1m  and 2m , 
respectively. 

 
 

Fig. 3 free body diagram of actuator  

 
For the platform, the force and moment 

balance can be described by: 
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where Pm and PI are the total mass and 
moment of inertia including those of the 
platform and the carried load. 
 

3. Determining the Limitation 
The equations of motion in Eqs. (1) – (14) 

represent the motion of the platform and its 
actuators. The required actuating motions (speeds 
and accelerations) can be determined for desired 
platform motions. Then Eqs. (13) – (14) can be 
combined to obtain  the following matrix form in 
which the actuating forces can be obtained using 
inverse matrix: 
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Given the desired motion of the platform, the 
motion of actuators can be determined and used 
to obtain the inertia force, iTF , , acting on the 

platform due to the inertia of actuator from 
angular motion.  Then, the force required on the 
platform for the desired motion can be computed. 
Finally, the actuating force can be determined. 
The computation process is shown in Fig. 4.  
 

 
 

Fig. 4 Computation diagram 

 
After the forces and speeds of actuators due 

to desired platform motion are determined, the 
maximum speed and force and their 
corresponding actuators can be identified. For the 
similar motion with increased speed and load, it is 
likely that these identified actuators will also 
require the highest performance among the 
platform actuators. Therefore, the platform 
performance is limited by the performance of 
these actuators. 

For the speed limitation, the platform 
movement can be easily found using the 
maximum limit of the actuator in Eq. (6). 
Unfortunately, for the force limitation, Eq. (15) 
must be modified to have unknowns in the vector 
on the left-hand side and the solution is then 
obtained using the inverse matrix method. For 
example, the heaviest load that results specified 
force on the actuating force can be obtained from 
solving: 
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4. Implementation and Results 
In this section, the developed method is 

implemented for the example of Stewart platform 
mechanism. The properties of the Stewart 
platform in the example are presented in Table 1. 
The position of the connecting joints at the base 
and platform is defined by the angles ψB and ψP, 
respectively (as show in Fig. 5).  

 
Table. 1 Properties of the Stewart platform in the 
example 

Description Limitation 

Platform+load 
 Mass [kg] 
 Radius [m] 
 ψP [deg] 
 Inertia [kg m2] 
 CG 

 
4 

0.2 
5 

[0.09, 0.09, 0.18] 
[0,0,-0.05] 

Base 
 Radius [m] 
 ψB [deg] 

 
0.25 
55 

Actuator 
 Length [m] 
 Speed [m/s] 
 Force [N] 
 Mass 1 [kg] 
 Mass 2 [kg] 
 Inertia 1 [kg m2] 
 Inertia 2 [kg m2] 

 
0.3 (0.6 fully extended) 

0.02 
90 

0.25 
0.25 

[0.01,0.01,0] (at L = 0.3) 
[0.01,0.01,0] 

 

Fig. 5 position of actuator joints at the base and 
platform (top view) 

 
In this paper, the desired platform motions 

are represented using the following sinusoidal 
functions. For angular motion, the center of 
rotation is located at the center of gravity of the 
load (as shown in Fig. 6). 
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where A  represents the considered variable 
(i.e., surge, sway, heave, roll, and pitch 
motions), 0A is the initial value of the 

variable, 1A  is the magnitude of oscillation 

and A  is the oscillation frequency of the 
variable. 

 
Fig. 6 angular motion of the platform 

 
Figs. (7) – (16) present the maximum force 

and speed of the actuators in order to achieve the 
desired motion specified by Eq. (18) for surge, 
sway, heave, roll, and pitch motions in the 
example Stewart platform.  
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Fig. 7 maximum actuating force from surge 

motion (A1= 0.15m) 
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Fig. 8 maximum actuating velocity from surge 

motion (A1= 0.15m) 
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Fig. 9 maximum actuating force from sway 

motion (A1= 0.15m) 
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Fig. 10 maximum actuating velocity from 

sway motion (A1= 0.15m) 
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Fig. 11 maximum actuating force from heave 

motion (A0= 0.45m, A1= 0.15m) 
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Fig. 12 maximum actuating velocity from 

heave motion (A0= 0.45m, A1= 0.15m) 
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Fig. 13 maximum actuating force from roll 

motion (A1 = 45deg) 
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 Fig. 14 maximum actuating velocity from 

roll motion (A1 = 45deg) 
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Fig. 15 maximum actuating force from pitch 

motion (A1 = 45deg) 
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Fig. 16 maximum actuating velocity from 

pitch motion (A1 = 45deg) 
 

From the results, the capability of the 
example Stewart platform mechanism for the 
specified motions is limited by the speed of the 
actuator. This is common for electric linear 
actuators which are known for high actuating 
force with slow movement speed. For the 
example platform, the maximum actuating speed 
for the desired motion is at ωAt = π/2 and 3π/2. 
For the maximum actuating force, it is happened 
at ωAt = 0, π, 2π for all motions; expect the heave 
and pitch motions.  

In these test cases, the effect of rotational 
mass of the actuators is insignificant. The results 
show negligible effect of actuator moment of 
inertia. This is because the motion of the platform 
is very slow so that the actuators require small 
angular acceleration as well as excessive force 
due to their moment of inertia. 
 

5. Conclusion 
This paper presents a method for the 

determination of required actuator force and 
speed for the desired oscillating motion of the 
Stewart platform. The limitation of the platform 
can be determined using the performance of the 
actuator. The method utilizes theoretical 
equations of motion of Stewart platform, assumes 
no friction in the actuators and their joints, and 
accounts for the inertia of the actuators.  
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