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Abstract 
 The effect of ambient turbulence on the elliptical instability and the breakdown process of a 
counter-rotating vortex pairisstudiedvia the use ofdirect numerical simulation (DNS).The ambient 
turbulence is modelled as homogeneous isotropic turbulence (HIT). The turbulence intensity is 
characterised bythe turbulence dissipation rate. It is found that the ambient turbulencesuppresses the 
occurrence ofthe elliptical instability. It alters the most amplified wavenumber from mode 6   (without 
ambient turbulence) to 2  . Additionally, the linear regime of the three-dimensional instability is 
bypassed.  
Keywords:Counter-rotating vortex pair, Elliptical instability, Turbulence ambient, Direct numerical 
simulation 
 

1. Introduction 
Once an airplane manoeuvres, it sheds a pair 

of wake vortices rotating in the opposite direction, 
which can be found far away behind an airplane5 
– 10 times of wingspan distance [1].The 
occurrence of these wake vortices is one of the 
main problems for the air transportation and 
airport because it possesses a strong circulation 
and is long-lived. For example, it may cause a 
hazard to the following aircraft (especially with a 
small airplane), resulting in the fight delay[2].It is 
thus important to investigatethe evolution of the 
counter-rotating vortex pair to explore its 
behaviour and predict how long it can live, 
especially in realistic backgrounds (e.g. 
stratification, turbulence). 

One of the most important dynamics of the 
vortex pair is that many kinds of three-
dimensional instabilities develop during the 
change from laminar to turbulence. Generally, the 
vortex pair undergoes laminar-to-turbulence 
transition via two types of mechanisms, namely 
the short-wavelength (elliptical) and the long-
wavelength (Crow) instability. Both of 
instabilities can be classified by the vortex aspect 

ratio( /
o o

a b , where o
a being the vortex core 

radius and ob being the separation distance 

between vortex pair), and it is found thatthe 

elliptical instability happenswhen / 0.1
o o

a b 

[3].When the ellitical instability occurs, it 
influences themutual induce strain and vortex 
stretching of the vortex pair during the linear 
phase.The vortex pair then undergoes the 

nonlinearphase,in which the secondary 
vortexarises, and finally breaks down to 
turbulence resulting in a decrease of thevortex 
circulation [4]. 

Previous studies in both short-wavelength 
and long-wavelength instabilities in a stratified 
fluid found that the elliptical instability develops 
qualitatively in the same manner as in an 
unstratified fluid when the stratification is below 
the moderate level ( 2Fr   , where Fr  being 
the Froude number). For thestrongstratification 
( 2Fr  ),the buoyancyeffectenhances the effect 
ofmutual induce strain and secondary vortex.This 
increases the rate of the vortex decay[5].On the 
other hand, the buoyancy force affects the Crow’s 
instability only when the level of stratificationis 
weak to moderate.This decreases thevortex 
circulationand reducesthe required timefor the 
appearance of thebursting process, which leads to 
the occurrence of a vortex ring. In the strong 
stratification, the vortex pair is destroyed before 
avortex ring appears[6].When the Crow’s 
instability develops in the background turbulence, 
it is found that the bursting process happens faster 
than that in a stratified fluid. Additionally, the 
decay rate of the vortex pair increases.This 
suggests that theeffect of the ambient turbulence 
hasmore influence than the buoyancy force[7]. 

Thus, this research investigatesthe effect of 
ambient turbulence, modelled as homogeneous 
isotropic turbulence (HIT),on the development of 
the elliptical instabilityviathe use of direct 
numerical simulation (DNS).The effect of the 
ambient turbulence on the most amplified mode 
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it can be seen that the vortex pairs for both cases 
are  

   
*

0.0t   
 

*
5.0t   *

7.5t   *
10.0t   

  
*

12.5t   
 

*
15.0t   *

17.5t   *
20.0t   

Figure8. Contour of vorticity magnitude of the 
vortex pair developing in the quiescent 

background ( * 0.0  ) at * 0.0 20.0t   . 
 
in approximately the same descent height 

* 4.5z   , butthe three-dimensional 
instabilitydoes not seem to yet develop for the 
vortex pair in the quiescent ambient.Once the 
flow develops further, a vortex pair in a quiescent 

background drops to * 14.0z    at * 20.0t   
(figure 8h), while the vortex core weakens and 
finally destroyed. In contract, a vortex pair in a 
turbulence ambient is destroyed at higher distance

* 6.5z    (figure 9e, * 12.5t  ) by the effect of 
viscosity and turbulence ambient. 
 
3.2. Spectral Analysis 
Figure 10 shows the evolution of the energy of 
the most amplified perturbation modes of a vortex 
pair in both quiescent ( * 0.0  ) and turbulence 

ambients ( * 0.23  ). For the vortex pair in a 
quiescent ambient, it develops both the linear and 
the nonlinear phases of the three-dimensional 
instability. The linear regime occurs between 

* 3.5t   (time when the energy starting to increase  

 

  
*
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5.0t   *
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10.0t   

  
*

12.5t   
 

*
15.0t   *

17.5t   *
20.0t   

Figure9. Contour vorticity magnitude of a vortex 

pair developing in turbulence ambient ( * 0.23  ) 

at * 0.0 20.0t   and max0.6  . 
 
from the minimum point) and * 12.5t  (time 
when 
the energy exceeding about 2%  of the slope 
[5]).The most amplified mode is at the 
wavenumber of 6   or at the wavelength of 

1.04  , which corresponding to the breakdown 
due to the elliptical instability. This agrees very 
well with the work of Nomura et al. 
( 6.3, 1.04   ) [5] and Laporte & Corjon 

( 0.85 0.05   ) [4].The growth rate of the 
energy of each mode is computed from 

 
d ln1

2 d

E

t


   

 
 

. (7) 

 
The growth rete of the most amplified mode  
( 6  )is 0.8432 . This agrees well withthe 

growth rate of Nomura et al. ( 0.83  ) and 

Laporte & Corjon ( 0.96 0.3   ).However,for 

the vortex pair in theambient turbulence,the linear 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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instability phase cannot be observed. Therefore 
the  
 
growth rate cannot be computed. The linearphase 
and the mode withthe most energy changes to

2  (not shown here), corresponding to the 
Crow’s instability.  
 

Figure10. Development of the energy of the most 
amplified perturbation modes for the vortex pair 

in quiescent and turbulence backgrounds. 
 

4. Conclusion 
The effect of the ambient turbulence on the 

elliptical instability of a counter-rotating vortex 
pair is investigated by using direct numerical 
simulation. For the vortex pair in a quiescent 
background, it is found that the wavenumber of 
the most amplified mode is 6   (wavelength of 

1.04  ) and the growth rate of this mode is 
0.83  . This corresponds to the breakdown due 

tothe elliptical instability. The vortex pair breaks 

down to turbulence at time * 15.0t  . The 
turbulence ambient seems to accelerate the 
breakdown process. The vortex pair subject to the 
ambient turbulence begins to breakdown at time 

* 2.0t  . The linear phaseof the three-dimensional 
instabilities is bypassed and the most amplified 
modeis altered to mode 2  (wavelength 

3.14  ). 
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