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Abstract 

Nowadays, they are many methods provided to solve for the equations of motion of the constrained 
mechanical system. In this paper, we use the fundamental equation of constrained motion method because 
it is a closed-form equation that can be used to solve linear/nonlinear motions even for the system 
subjected to redundant constraints or conditions. We consider the trajectory tracking control of a mobile 
robot. Velocity profiles of robot wheels are represented by kinematical information that is obtained from 
the closed-form equation of the fundamental equations. To show the efficiency of the control, the tracking 
path is chosen as a circle path. And then the real non-holonomic robot is developed to use with the 
velocity control signal to verify the effectiveness of the control in real life application. 
Keywords: The Fundamental Equation, Tracking, Non-holonomic Robot, Constraint Equation 

1. Introduction 

In the history of robot revolution, one of 
well-known first robot [1] is called Greek God 
Nepheastus. It is a simple mechanical robot that is 
used for opening and closing water valves. In 
these days, robots now can substitute human for 
doing many works such as applications from 
Industrial robots, Service robots, Educational 
robots, Modular robots, Collaborative robots, and 
Mobile robots. 

One of those mobile robots is called an 
Unmanned Ground Vehicle (UGV), which is 
mechanized equipment that moves across the 
ground [2]. The UGV needs a path planning to 
work properly. Thus, many engineers and 
scientists have studied and discovered for the best 
equations for path planning. Some of them are as 
following. 

First path planning was founded by 
Dubin in 1920s [3]. He used the simple geometry, 
circle and straight line, to find the shortest curve 
that connects two points in two dimensional 
planes. This is the based model of path planning 
at the present time. Next, Journ’es [4] improves 
Dubin path for non-holonomic robot (NHR), the 
robot that has degree of freedom less than 
controlled degree of freedom [5]. He calls this 
developed path as Suboptimal Continuous-
Curvature Paths (SCCP). SCCP is 10 times more 
accurate than Dubin Path.  

Currently, Dubin path is still be widely 
used. For example, Xian-Zhong, et al. improve 

the Dubin path to Bounded Curvature Path (BCP) 
by applying Dubin path for dynamic equation. 
BCP can plan a pathway through points but it has 
not got a perfect trajectory tracking yet.  

After that there are many researchers who 
aimed to propose for the perfect trajectory 
tracking, such as N.E. Pears [7] who used steering 
control as shown in Fig. 1, Gregor klancar [8] 
who used First Order Kinematic Model (speed) 
for path planning of NHR as seen on Fig. 2, 
Mohammed A.H. Ali, et al. [9] who used Hybrid 
Method, which compounds of Resolve 
Acceleration Control (RAC), Active Force 
Control (AFC), and RAC-AFC as illustrated on 
Fig. 3. 

Fig. 1 N.E. Pears scheme 

      Fig. 2 Gregor klancar scheme 
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        Fig. 3 Mohammed A.H. Ali, et.al. scheme 
 

All mentioned methodologies are highly 
accurate for trajectory tracking. However, they 
have complex controlling schemes so that their 
controllers are high cost and are rarely found in 
the market. 

Pioneer 3-AT is a good robot for NHR. It 
embedded controller within itself. Xiaoming 
Lang [10] planned a path of Pioneer 3-AT by 
controlling the wheels from kinematic model. The 
robot has a perfect trajectory tracking while 
carrying goods but its cost is still pretty high 
(about 30,000 baths). 

This work is about making an accurate 
trajectory tracking with low price NHR. For path 
planning, we choose the fundamental equation of 
constrained motion because it represents in a 
closed-form and can be used with redundant 
constraints and conditions. The fundamental 
equation was previously used for NHR by Hao 
Sun, et.al. [12], which they called their 
application as Udwadia-Kalaba Approach. They 
used a torque controller for tracking control of 
mobile robots. And since a torque controller is 
not easy to find and is difficult to make when 
comparing with a velocity controller, in this work 
we improve their approach by using a velocity 
profile of NHR wheels instead of the torque 
profile. Then Arduino controller is used to 
execute the velocity command signal. This makes 
the NHR’s price lower to about 2,000 baths. 

 
2. Dynamics of the UGV system 
We utilize the conceptualization of the 

fundamental equation [13] in obtaining our UGV 
system. First the unconstrained equation is 
described in which its coordinates are all assumed 
independent of each other. The equation of 
motion of this system is given, using Lagrange’s 
equation, by 

 ���, ���� = 
��, �, �,� �� �                   (2.1) 
with the initial conditions  
    �� = �
  , �� =  �� , ��� = ��
  , ��� =  ���         (2.2) 
where � = ��, ��� is the generalized coordinate 2-
vector; M >0 is the 2 by 2 mass matrix, and 
 is a 
given force vector, which is a known function of 
r, �� , � and ��. 

From Eq. (2.1), we find the acceleration 
(�� ) of the uncontrolled system given by 
       �� = �����, ��
��, �, �,� ���: = �.             (2.3) 
Second, we impose a set of control requirements 
as constraints on this uncontrolled system. We 
suppose that the uncontrolled system is now 
subject to the p sufficiently smooth control 
requirements given by  
        ����, �, �,� ��� = 0 ; � = 1,2,3, … , "          (2.4) 
where s ≤ p equations in the equation set of Eq. 
(2.4) are functionally independent. The control 
constraints described by Eq. (2.4) include all the 
usual varieties of holonomic and/or non-
holonomic constraints and they do not permit all 
the components of the initial conditions ��, ���, �� �$% ���  to be independently assigned. 
We shall assume that the initial conditions in Eq. 
(2.2) satisfy the p control requirements. (If not, 
the control constraints can be expressed in an 
alternative form so that they are asymptotically 
satisfied [14]. 

Differentiating the control requirements 
in Eq. (2.4), we obtain the relation 

      &��, �, �,� �� ��� = '��, �, �,� �� �,       (2.5) 
where A is an p by n matrix whose rank is s and b 
is an p-vector. We note that each row of A arises 
by appropriately differentiating one of the p 
control requirements in the set given in Eq. (2.4). 

In the third step, the equation of motion 
of the constrained (controlled) system is given by   ���, ���� = 
��, �, �,� ��� + 
)��, �, �,� ���     (2.6) 
where 
) is the control force n-vector that arises 
to ensure that the control requirements in Eq. 
(2.5) are satisfied. Using the fundamental 
equation, the explicit equation of the constrained 
UGV system is given by 
  M(r,�)�� = 
 + &��&���&��*�' − &��,   (2.7) 
where in the various quantities have been defined 
in the previous two steps and the superscript “+” 
denotes the Moore-Penrose inverse of a matrix 
[15]. In the above equation and in what follows, 
we shall suppress the arguments of the various 
quantities unless required for clarity. 

We note that Eq. (2.7) is valid (i) whether 
or not the control requirements are holonomic or 
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non-holonomic, (ii) whether or not they are 
nonlinear functions of their argument, and (iii) 
whether or not they are functionally dependent. 
The control force that the uncontrolled system is 
subjected to, because of the presence of the 
control requirements in Eq. (2.4), can be 
explicitly expressed as   
)��, �, �,� ��� =  &��&���&��*�' − &��.  (2.8) 

The control force given in Eq. (2.8) is 
optimal in the sense that it minimizes the control 
cost at each instant of time. 

Pre-multiplying both sides of Eq. (2.7) 
with ��� , the acceleration of the constrained 
system that satisfies the constraint in Eq. (2.4) 
can be expressed as �� =  ���
 +  ���&��&���&��*�' − &��,(2.9) 
a relation which we shall require later on. 

 
3. Path planning for a circle path 
For illustrative purpose, this paper is 

going to show the method of path planning for a 
circle path. Using the conceptualization from the 
fundamental equation [13] as mentioned in 
Section 2, we obtain: 
3.1 The unconstrained system 

We first use the center of mass of the 
wheel of the NHR to define the coordinate for the 
NHR in the XY plane and assume that it is 
unconstrained (see Fig. 4).  

Then, obtaining the equation of the 
unconstrained motion by using Lagrange’s 
equation, we define the position of the NHR as ,� =  ��-./��                      (3.1)                0� =  ��/�$��                      (3.2) 

Fig. 4 The center of mass of the NHR 
where ,�   is a position of the ith wheel of the NHR in the 
x-plane 0� is a position of the ith wheel of the NHR in the 
y-plane ��  is a position of the ith wheel in polar coordinate ��  is an orientation angle of the NHR in polar 
coordinate 

From kinetic energy equation, we get 

1 =  12 2 3��,4� 5 + 04� 5� + 12 6�����5�5
�7�  

              =  �5 3� 8��5���5 + 6����5 + ��59 

    + 12 32��22�� 22 + 62�� 22 + �22�  (3.3) 

where we mark: 3 = mass putting on each wheel of the NHR    M  = displacement between both wheels 
              of the NHR  ��  =  Angular velocity    

And since the NHR moves in the XY-
plane, the potential energy 

  T =  0                      (3.4) 
Thus using (3.3) and (3.4) in the Euler – 

Lagrange’s equation, 

  
UUV 8 WWX� 19 − WWX 1 + WWX T =  
��, �, �,� ���,      (3.5) 

we thus obtain 

      Y3�000
03���5 + 6�00

00350
00035�55 + 65

Z [\
\]��������5��5_̂_̀ 

              =  
[\\
\] 3������5−23������ ���35�5��55−235�5�5� ��5 _̂__̀ .               (3.6) 

From (2.3) and (3.6), we get the unconstrained 
acceleration 

� = [\
\]��������5��5 _̂_̀ =

Y3�000
03���5 + 6�00

00350
00035�55 + 65

Z
��

[\\
\] 3������5−23������ ���35�5��55−235�5�5� ��5_̂__̀ 

.             (3.7)   
 

3.2 The constraint equation 
The NHR is forced to maneuver a circle 

path in this step. First, we assume that the NHR is 
moving freely in the XY-plane. 
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Fig. 5 Dynamics and Variables of NHR 
    

After that, we consider a circle path as a 
constraint (see Fig. 5). 

The first constraint is for keeping one 
wheel in a circular form with radius R, 
      ���-./���5 + ���/�$���5 = a5,        (3.8) 
and the second one is for maintaining the distance 
between the two wheels as a constant l, ��5-./�5 − ��-./���5 + ��5/�$�5 − ��/�$���5 = M5  
                                                                        (3.9) 

Then, we appropriately differentiate Eqs. 
(3.8)  and (3.9) to the form of Eq. (2.5) as 

&�� = b ��∆5� 0∆55 0∆5d 0∆5ef [\
\]��������5��5_̂_̀ = b−���5g5� f = ',      

          (3.10) 
where  ∆5�=  �� − �5cos ��� − �5�, ∆55= ���5/�$��� − �5�, ∆5d= �5 − ��-./��� − �5�, ∆5e=  ���5/�$��� − �5�, 
and g5� = −��� 5 − �5� 5 + 2�����5 cos��� − �5�− 2����5���� − �5� � sin��� − �5� −2����5���� − �5� �/�$��� − �5�  −���5���� − �5� �5-./��� − �5�. 

 

3.3 The constrained system 
Using Eqs. (3.6) and (3.10) in Eq. (2.9), 

we obtain the constrained acceleration �� . We can 
further achieve other kinematical information 
(velocity, ��  and displacement, q) by appropriately 
integrating the acceleration. All these information 
are of the UGV when it travels in the circular 
format.  

 
4. Numerical simulation for NHR 

In order to verify the approach, we use a 
computer simulation by first identifying the 
physical properties of the NHR. We define the 
inertia of the NHR [16] and choose the radian (R) 
for the circle path as the following.  

Moment of inertia of NHR w.r.t 
         the left wheel:            6� = 0.3125 kg-m2      

Moment of inertia of NHR w.r.t 
         the right wheel:          65 = 0.3125 kg-m2      

Mass of NHR w.r.t the left wheel:           3� = 1.25 kg 
Mass of NHR w.r.t the right wheel:         35 = 1.25 kg 
Distance between the left and right wheels: l = 0.2 m 
Radius of circle path of the right wheel:     R = 0.5 m 

Time = 26 Seconds 
Next, we begin the numerical simulation 

using all information from Section 3.3 with the 
initial displacement  ���, ��, �5, �5� = �50,0.25,30,0.25�. 
and initial velocity  ����, ���, ��5, ��5� = �0,0.25,0,0.25�. 

We then get the velocity profile of the 
wheels of the NHR and the tracking path of the 
NHR as seen on Fig. 6 and Fig. 7 respectively. 
We note that the red lines refer to as the response 
of the left wheel of NHR, whereas the one of the 
right wheel are shown in blue. 

 
 

Fig. 6 Velocity of the wheels of the NHR 
 

 
 
    Fig. 7 Displacement of the wheels of the NHR 

 
The errors in satisfying the constraints 

are shown in Fig. 8 where the red line is the error 
in displacement of the first constraint Eq. (3.8). 
The blue line is the error in velocity of the first 
constraint Eq. (3.8). The yellow line is the error 
in displacement of the second constraint Eq. (3.9). 
And the green line is the error in velocity of the 
second constraint Eq. (3.9). It can be seen that all 
these errors are very small. This means that our 
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approach satisfies the trajectory tracking of the 
circle path. 

  
 
 
 
 
 
 

 
 
 

       Fig. 8 Errors in satisfying the constraints 
In the end, The NHR, seen on Fig. 9, is 

tested by using the velocity controlled 12.5 ×10-2 
m/s for the first wheel and 7.5×10-2 m/s for the 
second wheel. We choose the Arduino, pulse 
width modulation [17], to be the velocity 
controller. It uses the tracking time of one round 
of circle path for 27.83 second. The physical 
tracking path confirms with the simulation result 
shown above. 

 
 
 
 
 
 
 
 
 
 
 

 
 

     Fig. 9 The NHR for testing 
 

5. Conclusion 
While each day mobile robots keep 

developing, this research proposes for another 
way in advance the mobile robot technology. The 
fundamental equation of constrained motion 
approach can be used to regulate the NHR by 
controlling velocity of its wheels.  

The velocity control is a great idea for 
controlling the NHR. Because some engines 
cannot accurately feedback torque profiles, for 
example, all combustion engines, gas turbine, and 
steam turbine. This result could be the inspiration 
for the combustion engine robot. 

In practical, we have tried the velocity 
control profile with our own making NHR, driven 
by DC motor. We use the mentioned circle path 

for this test. The result shows that the NHR tracks 
nearly to the circle path while taking roughly the 
time as shown in the computer simulation. This 
proves that our approach has the reliability of the 
real life application. However, it might be better 
to add an uncertainty controller to compensate for 
any modeling errors and disturbance for more 
accurate tracking. 

Future work is progressing on applying 
this methodology to the more complex dynamic 
model of mobile robots and more realistic 
performance with the great uncertainty controller.  
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