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Abstract 

This paper describes our research on robustly stabilizing the motion of Translational Oscillator 

with Rotating Actuator (TORA) system where mismatched uncertainties are present.  The TORA system 

has fewer controls than the number of degrees of freedom, so-called underactuated mechanical systems, 

originally studied as a simplified model of a dual-spin spacecraft to investigate the resonance capture 

phenomenon.  A novel recursive controller design associated with Control Lyapunov function method, 

namely, Dynamic Surface Control (DSC) is presented in this paper. The DSC is a robust control 

technique is generally applied to mismatched dynamic systems in strict feedback form to avoid the 

problem of an “explosion of terms” occurring in the integrator backstepping method. We use the method 

of global change of coordinates and collocated partial feedback linearization to transform the dynamic 

model of the TORA system into a strict feedback form, allowing us to successfully apply DSC.  The 

uncertainties appear in the TORA system are handled by using the idea of nonlinear damping through the 

DSC. The performance of the proposed controller is compared with that of a controller designed using 

DSC with no nonlinear damping, referred as traditional DSC. Both the robust DSC and the traditional 

DSC perform well in the absence of disturbances. The proposed DSC is more robust when disturbances 

are introduced. Furthermore, for the given set of controller gains, the quadratic stability and also the 

region of attraction can be solved numerically. 

Keywords: Translational Oscillator with Rotating Actuator (TORA) system, Dynamic Surface Control, 

Underactuated Mechanical Systems, Robust Nonlinear Control. 

 

1. Introduction 

The problem of analysis and control of 

nonlinear mechanical systems has been an 

important research area for a long time. Due to 

the rich dynamical behavior of nonlinear systems 

causes to great advances in various nonlinear 

feedback control techniques such as Feedback 

Linearization [4], Passivity-Based Control (PBC) 

[7], [9], Sliding Mode Control (SMC) [3], 

Integrator Backstepping (IB) Control [5], [9], etc. 

However, by nature of Feedback Linearization 

which based on differential geometric theory in 

the 1980s; therefore, it cannot be used for tackle 

the system with uncertainty. There are much 

attention has been given recently about 

Lyapunov-based techniques e.g. SMC, Lyapunov 

redesign [5], IB, etc. As in the concept of energy 

dissipation is used for designing a control law via 

PBC [7]. For uncertain nonlinear systems, the 

SMC is one of the most effective tools, it has 

good tracking performance, but requires systems 

to meet matching condition of uncertainty. In 

other ways, the IB design procedure has the 

problem of “explosion of complexity” caused by 

the repeated differentiations of virtual controls. 

An alternative control design method called 

Multiple Sliding Surface (MSS) control [14] was 

developed independently of IB but is 

mathematically very similar; however, MSS has 

the same problem as IB. In order to avoid the 

drawback of both IB and MSS above; a recursive 

and systematic controller design associated with 

Control Lyapunov function method, namely, 

Dynamics Surface Control (DSC) has been 

developed by Swaroop et al. [12]. The DSC, a 

novel control technique, can reduce the 

complexity of IB, and mathematical difficulty for 

the SMC analysis due to discontinuous functions, 

and to overcome its inability to mismatched 

uncertainty. The concept of DSC is introducing a 

first-order filtering of the synthesized virtual 

control law at each step of the MSS design 

procedure. 

Underactuated Mechanical Systems (UMSs) 

are mechanical systems that have fewer control 

inputs than the number of degrees of freedom. 

Control of UMSs appears in a broad range of 



                      The 3rd TSME International Conference on Mechanical Engineering 

               October 2012, Chiang Rai 
 

  

Paper ID 

DRC1013 

applications [6], including Robotics, Flexible 

Systems, Mobile Systems, Locomotive Systems, 

Marine Systems, and Aerospace Systems. In 

particular, Translational Oscillator with Rotating 

Actuator system, commonly referred to as TORA 

system, has been mainly a benchmark example of 

the UMSs, introduced by Wan et al. [13], and 

originally studied as a simplified model of a dual-

spin spacecraft to investigate the resonance 

capture phenomenon. Global asymptotic 

stabilization of TORA system using output 

feedback has been known due to [1]. Various 

constructive nonlinear control methodologies 

have been tested on this system such as IB [5], 

[9], while in [7], the problem was set in an Euler-

Lagrange framework and solved by the method of 

passivity-based output feedback control. 

In this paper, we present the robust dynamic 

surface controller design procedure for the 

stabilization of the TORA system with 

mismatched uncertainties. The model 

uncertainties of the TORA are handled by using 

the concept of nonlinear damping assigned to the 

DSC. It is proved that the proposed design 

method is able to guarantee semi-global uniform 

ultimate boundedness of all signals in the closed-

loop system, by appropriately choosing of 

controller gains and filter time constants.  Finally, 

based on quadratic stability theory, feasibility of 

the fixed controller gains for quadratic 

stabilization can be tested and the region of 

attraction can be obtained. 

The paper is organized as follows: In Section 

2, we present the modeling of the TORA system 

by Euler-Lagrange method, then the method of 

collocated partial feedback linearization is used 

for transforming the TORA’s state space model 

into strict feedback form. In Section 3, the DSC 

design and Lyapunov-based controller design are 

proposed for control the TORA system with 

mismatched uncertain. The stability, robustness, 

and performance of the proposed control system 

will be analyzed in Section 4. Simulation results 

are discussed and compared in Section 5. In 

Section 6 gives some conclusions. 
 

2. Modeling of the TORA System 

The TORA system as illustrated in Fig. 1, 

where a translational platform of mass m1 is 

stabilized by an eccentric rotational mass m2 

located at a distance r from the platform’s center 

of mass.  The oscillator platform is connected to a 

fixed support via a linear spring of stiffness k1, 

constrained to one-dimensional motion. By 

neglecting of model uncertainties, the dynamic 

model of the TORA system can be obtained by 

using Euler-Lagrange method. 

2.1 Euler-Lagrange Equation for TORA 

system 

 

 
Fig. 1 TORA system configuration [6]. 

 

The Lagrangian for TORA system is written as 
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2.2 Collocated Partial Feedback Linearization 

The state space model of the TORA system is 

unsuitable for direct application of DSC method, 

since they are not being in strict feedback form 

[5]. The procedure of collocated partial feedback 

linearization was developed by Spong [11]. It 

employs a change of control and coordinate 

transformation to change the original equation of 

motion of the TORA system into a system in 

cascade form. After collocated partial feedback 

linearization using a change of control via the 

state feedback 
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where u  is the new control input. Thus, based on 

Theorem 4.2.1 [6], the global change of 

coordinates 
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transforms the dynamics of the TORA system 

into a cascade nonlinear system in strict feedback 

form 
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2.3 TORA System with Mismatched 

Uncertainties 

We augment the plant uncertainties 1f  and 

2f  in the nominal TORA system (5) as 

mismatched uncertainties in the sense that they 

cannot be controlled directly by the control input 

u . Consequently, the uncertain nonlinear TORA 

system is given by 
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These uncertainties are unknown but bounded 

by )(|)(| 11 rr qqf   and  |),(| 2 rr pqf  

),(2 rr pq  with 0)0(1   and 0)0,0(2  . 

Moreover, each of components of f  is locally 

Lipschitz nonlinearity to guarantee the existence 

and uniqueness of the solution of (6).  

However, the Core-subsystem )( Core  in (6) 

has an implicit term )sin( 2q  that cannot directly 

design a virtual input 2q  to handle the 

uncertainty 2f  in the DSC procedure. To cope 

with the problem, we use the change of variables 
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Now the state space equation (7) is in strict 

feedback form; moreover, its Core-subsystem 

)( Core  has explicitly in a virtual input 3x  allows 

us to design a robust DSC for tackling those 

uncertainties. However, the implicit term )sin( 2q  

cannot be completely deleted from the system. A 

Lyapunov-based controller design will be used 

later for the Outer-subsystem )( Outer . 

 

3. Robust Controller Design 

The overall closed-loop control system is 

summarized and shown in the Fig. 2. It consists 

three parts as follows: First, a collocated partially 

feedback linearization block. Second, a TORA 

(or nominal) system with its uncertainty block. 

Third, the controller block which it contains two 

different control methods i.e., DSC and 

Lyapunov-based control. 

 

   
 

Fig. 2 Overall Control System Architecture 

 

The control objective is to stabilize the cart’s 

position and its velocity )0,0( 11  qq  , which 

corresponds to make 0rq , 0rp  when the 

system started from some of an initial condition.  

3.1 DSC Design for Core-Subsystem 

Let the 1
st
-sliding surface 11 : xS  . After 

differentiating 1S  and using (7), 

121 fxmS   
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Then, the 2
nd

-sliding surface is defined as 

dxxS 222 :   where dx2  called the virtual (or 

synthetic) input received from the output of the 

1
st
-order low-pass filter: 

 

         )0()0(, 222222 xxxxx ddd         (8) 
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written in the term of 1S , 2S , dx2 , and dx3  as 

follows 

 












dd

d

Core
xfxSSkS

fxSmS

2233112

1221

)(

)(
:






 

          (9) 

where dxxS 333 :   is the 3
rd

-sliding surface, 

considered as an input for (9) while dx3  will be 

design to drive 02 S .  

By using Lyapunov’s method and Young’s 

inequality: 
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where i  is arbitrary. The stabilizing function 2x  

and dx3  can be designed as follows 

For 2x  with respect to the Lyapunov function 

candidate 2/)( 2

111 SSV  , we assume that 

dxx 22   and dxx 22   (i.e., 02 S ) and 

using the idea of nonlinear damping [5]. The 

following choice of 2x  is as follows 
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Therefore, 1S  is uniformly ultimately bounded. 

Similarly, for dx3 , setting 2/)( 2

222 SSV   as 

a Lyapunov function candidate and assuming that 

dxx 33   (i.e., 03 S ) and also using the idea 

of nonlinear damping [5]. A reasonable choice for 

dx3  would be to set 
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Therefore, 2S  is uniformly ultimately bounded. 

Remark:  We can see that the states ),( 21 SS  are 

forced to the origin via a virtual (or synthetic) 

input 3x  from the Outer-subsystem )( Outer . 

3.2 Lyapunov-based Design for Outer-

Subsystem 
The aim of using the change of variable in 

Section 2.3 is in order to can apply the designing 

of DSC for the uncertain Core-subsystem )( Core . 

However, the DSC methodology cannot be used 

for the Outer-subsystem )( Outer , because there 

is a cosine function multiplying with 4x  such that 

the error filter’s dynamics cannot formed in a 

linear equation. Therefore, a basic nonlinear 

controller design associated with a suitable 

Lyapunov function is used for the Outer-

subsystem.      

To drive dxx 33  , we define the 3
rd

-sliding 
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where 1K , 2K , and 3K  are controller gains, and 

are determined later. 

 

4. Stability Analysis 
In section 3, we separately designed the 

stabilizing functions (or virtual controls) for the 

Core-subsystem, and designed the control input 

u  for the Outer-subsystem by using any type of 

Lyapunov functions candidate. However, the 

dynamics of 1
st
-order LPF (8) occurring in DSC 

procedure, is included in the overall system for 

eliminates “the explosion of term”, does not 

proved stability property. 

4.1 Stability of Augmented Error Dynamics  

After defining the filter error 222 : xx d  , 

and including its dynamics from (8), the 

augmented closed-loop error dynamics are 
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where 1  and 2  is a nonlinear function of 

21, SS  and 2 . 

To determine stability, suppose the Lyapunov 

function candidate be 
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where the last inequality comes from Young’s 

inequality (10) for 2,1i  and 
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Consider the compact (closed and bounded) and 

convex set  
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Then the inequality (16) is written as 
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







Therefore,  
 

      2

4

2

32
12

2

2

2

2

102 SSSSKmV   

 

We conclude that the solutions are globally 

uniformly ultimately bounded. Since   is 

arbitrary, the ultimately error bound can be made 

arbitrarily small.  

4.2 Norm-Bounded Error Dynamics and 

Quadratic Stabilization for qr-pr 

The stability proof and determination of the 

controller gains for the augmented closed-loop 

error dynamics as shown in Section 4.1 is not 
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straightforward, since it requires the upper bound 

of the nonlinear functions 1  and 2 . In this 

section, their stability and region of attraction will 

be considered.  

Since, only the Core-subsystem is designed 

by DSC. By assuming 03 S , the closed-loop 

error dynamics of the Core-subsystem (13) is 

written as follows 

 

 

 























1

12121

2222

1122111

2

2

1

2
11

12

21

:

:

::

dzc

SSS

dSKS

dzCdSmSKS

z

m

K

Sm

K

z

















 





 

        (17) 

where the error state 
3

221 ][  TSSz  ,  

31

1 ][:  mmKCz ,  
1

2
1

2111 : 


Sfd  , 

2

2
2

2222 : 


Sfd  ,  and  

1

1

1

11

1

2
11

2: S

S

m

K














  

Equation (17) can be rewritten in matrix form as 

 

           2211 nBnBwBzAzT nnwz          (18) 

 

where w 1zCz , 
2

1111 ][  Tddn  , 

2

2222 ][  Tddn  , 




















10

010

001

1

m

K

T , 

























2

1

2

1

00

00



K

mmK

Az , 



















1

0

0

wB , 



















10

00

01

1nB ,  and  



















00

01

00

2nB . 

 

Moreover, T  is always invertible. After 

multiplying the inverse matrix 
1T  to both sides 

in (18), the Core-subsystem’s augmented error 

dynamics are rewritten as  

 

         








zCw

nBnBwBzAz

z

nnwcl



2211


      (19) 

where  


























2

2
1 1

11

2

1

00

KK

K

mmK

A

m

K

cl , 



















1

0

0

wB , 



















1

00

01

1

1

m

K

nB ,  and 



















00

01

00

2nB . 

Furthermore, an inequality constraint for w  can 

be imposed on a convex set DDi  . Since 1f  

and 1  are in 
1C -function, there exists a 

Lipschitz constant 0  such that  || . 

Then, 

||
~

||||:|||||| zCzCw zz    

 

For the given controller gains 21, KK  and 2 . 

The augmented closed-loop error dynamics (19) 

is formed in a special class of linear differential 

inclusions (LDIs) called norm-bounded LDIs 

(NLDIs) [2], can be regarded as a linear system 

subject to a vanishing perturbation w  and the 

nonvanishing perturbations 1n  and 2n . The 

following definition and theorem are given for the 

meaning of quadratically stable [10]. 

 

Definition 1  Let 0z  be an exponentially stable 

equilibrium point of the nominal system, 

zAz cl  when clA  is Hurwitz for the given set 

of controller gains, },,{ 221 KK . Then, a 

nominal nonlinear system is quadratic 

stabilizable via DSC if there exist a positive 

definite matrix P  such that 

 

PzwBzAPzzzV T

wcl

T

dt
d )()()(   

                     0)(  wBzAPz wcl

T
          □ 

 
We are interested in finding a quadratic 

Lyapunov function. If a quadratic Lyapunov 

function exists for this system, then the system is 

said to be quadratically stable.  

 

Theorem 1  Suppose that the closed-loop error 

dynamics (19) is given for the given set of 

controller gains, },,{ 221 KK . If clA  is 

Hurwitz, i.e., there exist 0P  and 0 TQQ  

such that 

         QPAPA T

clcl           (20) 

 

and )||||)(2()( 2maxmin zwCBPQ    for 

DJxD n

i  }|||||{   where J  is 

Jacobian matrix ][ xfJ  , the origin in (17) 

is exponentially stable on iD . Thus a nominal 
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nonlinear system is quadratically stabilizable via 

DSC with the gain   on iD . Furthermore, iD  is 

the region of attraction.                 □ 

Proof:  see [10].   

 

Applying Theorem 1 for the convex set 

|||{ 1

2 xxDi   }2 . Suppose the set 

of controller gains is 

}1.0,1.0,1.0{},,{ 221  KK  

Then )( clA  }8990.9,1010.0,1010.0{   

is Hurwitz and the solution of (20) for 3IQ   is 

0

0.05090.02150.0445

0.02157.07682.2609

0.04452.26094.9511



















P  

which has 5125.8)(max P . Consequently, 

according to Theorem 1, the origin of (7) is 

exponentially stable if 

  3606.0||||)(21 2max  zwCBP  

That is; the ),,( 221 SS  dynamics is 

exponentially stable if  3606.0||2 1 x . Hence, 

we can define a region of attraction as the domain 

}1803.0|||{ 1

2  xxDi . Finally, the 

simulation result for all error surfaces shown in 

Fig. 3  

 

 
Fig. 3 Time responses of all error surfaces 

 

5. Simulation Results 

The performance of the proposed robust 

controller is compared with a conventional DSC. 

The physical parameters also an initial condition 

of the TORA system have been kept same as by 

Olfati-Saber [6] and Qaiser [8], i.e., 101 m , 

12 m , 101 k , 1r , 102 I , and initial 

condition would be set as 
Tx ]0001[)0(  . The 

parameters for the proposed robust DSC are 

determined as follows 1.01 K , 1.02 K , 

23 K , 1.02  , 21 c , 3.12 c , 

2.021   ,  and  21    5.0 . 

Case I: TORA system with no uncertainty 

model )0(  if . The conventional DSC 

designed by Qaiser [8] was simulated (Fig. 4(a)) 

and compared with the proposed robust DSC (Fig. 

4(b)). The performance of both controllers has 

satisfactory response for exact model. Moreover, 

the proposed DSC used the less control effort.  

In order to verify the robust performance of 

proposed robust DSC. The uncertain term is 

given by )1.0sin(17.0 22

iii SSf   for 2,1i  

and used for testing of the both controllers. 

Case II: TORA system with uncertainty 

model )0(  if . The simulation result with 

conventional DSC is illustrated in Fig. 5(a). It can 

be seen that the conventional DSC cannot tackle 

with that uncertainty. For this case, the states 

21, qq  diverge and the control u  is unbounded 

when time goes to infinity (In practically, about 

100sec). However, the proposed robust DSC is 

utilized but more of the control effort to deal in 

this case. 

 

 
(a) 

 
(b) 

 

Fig. 4 Simulation results for the unperturbed 

TORA system: (a) traditional DSC and (b) robust 

DSC 
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(a) 

 
(b) 

 

Fig. 5 Simulation results for the perturbed TORA 

system: (a) traditional DSC and (b) robust DSC 

 

6. Conclusions 

The original TORA’s state space model is 

transformed into strict feedback form which 

allows us for designing with DSC method. 

Moreover, the implicit term )sin( 3x  as appearing 

in the Core-subsystem is eliminated by using the 

change of variables such that the proposed DSC 

can be applied on the perturbed 1x - 2x  dynamics. 

The two controller techniques; first is traditional 

DSC and second is robust DSC with a nonlinear 

damping, were designed and simulated for the 

TORA system with mismatched uncertainty.  

Both are perform well in the absence of 

disturbances. The proposed DSC is more robust 

when a non-Lipschitz uncertainty which can be 

considered as disturbances are introduced, but it 

use more control effort in this case.  Furthermore, 

the stability of the system is analyzed even in 

theoretically and numerically. Future 

improvements envisioned include enhancing the 

robust the robustness and generalization of the 

DSC scheme to the whole subclass of UMS. 
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