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Abstract 

This paper applies a backstepping boundary control technique to stabilize the temperature of a 
slender rod. The rod is modeled by a parabolic partial differential equation (PDE) with Neumann 
conditions.  The rod also includes an internal heat generator that makes the system unstable. For a 
feedback purpose, a Luenberger-like observer is used to estimate the temperatures along the rod. A gain 
kernel of the system is calculated and then used in the control law. In the experimental study, a copper rod 
with heat-generation is used as the control plant. The control set-up is anti-collocation. The temperature 
signal at one end is sent to the observer for estimation of the temperatures along the rod. The estimated 

values are then fed to the controller. Results from simulations using a finite difference method and from 
the real plant are compared and used to confirm the effectiveness of the control method.                              
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1. Introduction 

Actual mechanical systems are governed by a 
partial differential equation. To control the 
systems, an ordinary differential approximation is 

usually utilized to obtain a control law. [1-3] 
Recently, research on the infinite-

dimensional control has been investigated.  In [4-
7], the infinite-dimensional backstepping 
boundary control for parabolic PDE systems has 
been introduced. However, its implementations 
are still very few. 

This paper presents an experiment study of 
the infinite-dimensional backstepping boundary 
control scheme. It is conducted on a slender 
copper rod with a heat generator inside. The 
system is modeled by the parabolic PDE with 
Neumann conditions. The control set-up is anti-
collocation (i.e., the sensor is at one end of rod 
and the actuator is located at the opposite end). A 

thermo-electric cooler (TEC) is used as the 
actuator. 

The control objective is to stabilize the 
arbitrary temperature distribution along the rod to 
about the equilibrium temperature of the plant. 
Only temperature at one end is measured.               

 

2. Mathematical Model 

We consider the problem of heat conduction 
in a small cross-section copper rod with an 
internal heat generator. The rod has the length of 
L and the constant cross-section of A. The heat 
transfer from the rod is dissipated to its 
surrounding by convection. [4] 

The resistance of the heat generator is linearly 
increased with temperature as [4,9]     
      
 

where   

 
From the law of conservation of energy and the 
Fourier’s law, we get the heat equation [1,9] 
 
 
 
 
where   

 

The subscripts t and    mean partial differentiation 
with respect to time and space, respectively. 
 

 Re is the electric resistivity              

 R1 is the electric resistivity at T1. 

T1 is the temperature around which 
the Re is linearized. 

 
is the thermal coefficient of 
electric resistivity 

T is the rod temperature 

A is the rod cross-sectional area 

 is the perimeter of the rod  

T0 is the surrounding temperature 

K0 is the conductivity 

 is the spatial variable 

 is the temporal variable 

H is the surface conductivity 

 is the rod mass density. 

 is the specific heat. 
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Dividing (2) with               , the equation becomes  

        
 
 
 

 
where                                   and                   
 

 
We define the dimensionless variables of 

length, time and temperature, respectively, [4]  
 

 
 
 

where                and                                
 
 
 

Te is the constant equilibrium temperature 
distribution along the rod.            .  
The dimensionless form of (3) is as follows 

 
 

 
where 

 

 
 

3. Boundary control 

Consider the parabolic heat equation with 
Neumann conditions [5,8]  

 
  

 
 
 
The equation (5) is similar to (4) but the variable 
    is replaced by t, for convenience.  
The plant (5)-(7) with u(1,t) = 0 is unstable for a 
sufficiently large value of    in the reaction term 

of the equation. The variable U(t) is the input to 
be designed. The unstable plant is shown in Fig. 1. 
 
 
 
 
 
 

 
 
 
 
 

Fig. 1 The unstable plant. 

 
In backstepping method, we use the following 
coordinate transformation 
 
 
 

To transforms the system (5)-(6) into the target 
system   
 
 
 
 
 

which is known to be exponentially stable. We 
can find the gain kernel               by substituting 
(8) into (9) and with the help of the Leibniz 
integral rule and the integration by-part, we get 
the following hyperbolic PDE: 
                  
 

 
 
 
 
where  
 
By transforming (12)-(13) into an integral 
equation and using the method of successive 

approximation, the solution of this PDE is [1] 
 
 
 
 
where I1 is a first-order modified Bessel function.  
In Fig. 2, the gain kernel              is plotted for 

several values of     .    
From the transformation (8) and the boundary 
condition (11) give the controller in the form 
 
 

 

 

 

 

  
 
 
 
 
 

 
 
 
 
 
   Fig. 2 Gain kernel with several values of    . 
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3. Observer Design 

The backstepping method in the last section 
requires complete measurements of the 
temperatures inside the domain for feedback. 
However, the only possible measurement of the 
system is at x = 0.  The following observer is 

used to estimate the temperature along the rod, 
[6-8]     

 

 

 

 

 

 

 
Let the observer error be                  , we get the 
following PDE: 

 

 

 

 

 

We use the coordinate transformation  
 

 

 

to transform system to  
 

 

 

 

 

 
Substitute (23) into (20)-(22) to get the kernel  
  

 

 
 
 
 
 
which lead to 

 
 
 
 
 
 
 
From (30)-(32) and (24)-(26), we get the observer 

gains 
 
 
 
 
 

Introduce the new variables [6-8]  
  
 
The PDE (27)-(29) become 
 
 

 
 
 
 
 
This PDE has the solution  
 

 
 
 
and is expressed in the original variables, 
  
 

 
 
From (33), we get the observer gain function, 
 
 
 
and observer gain constant, 

 
 
 
Observer gain (39) and (40) will be used in 
observer (17)-(19) 
 
 

4. Experimental set-up 

A small copper tube with outside diameter of 
5 mm. and 80 mm. long is used as the control 
plant. Seven temperature sensors are used to 
measure the temperatures along the rod. Note that 
only one at the rod’s end (sensor No.1) will be 
used for feedback. It is installed with thermal 
insulation. Another five sensors are placed along 

the rod and their temperatures used for display 
only. At the other end of the rod, a thermo-
electric cooler (TEC) based on a Peltier effect is 
installed and the last sensor (sensor No. 7) is 
attached for measuring the control temperature. 
NI-USB 6225 is used as data acquisition and 
control unit. The control diagram and the photo of 

experimental set-up are shown in Figs 3 and 4, 
respectively.      

 
 
 
 
 

),(ˆ),(ˆ),(ˆ txutxutxu xxt 

)],0(ˆ),0([),0(ˆ
10 tutuqtux 

),1(),1(ˆ tutu 

uuu ˆ~ 

),0(~)(),(~),(~),(~
1 tuxqtxutxutxu xxt  

),0(~),0(~
10 tuqtux 

0),1(~ tu


x

dtvxqtxvtxu
0

),(~),(),(~),(~ 

)17(

)18(

)19(

)],0(ˆ),0()[(1 tutuxq 

)20(

)21(

)22(

),(~),(~ txvtxv xxt 

0),0(~ tvx

0),1(~ tv

)24(

)25(

)26(

)23(

2
),(


xxq

dx

d

0),1( q

)27(

)28(

)29(

),( xq

),0(~)0,(),(~),(~
1 tvxqtxvtxv xxxt 

),0(~])0,0([),0(~
10 tvqqtvx 

0),1(~ tv

),0(~)]()0,([ 1 tvxqxq  

)30(

)31(

)32(

)0,0(),0,()( 101 qqxqxq   )33(

),(),(,1,1  xqxqxx 

),(),(),( 


xqxqxq xx 

0)0,( xq

xxxq
2

),(




 
)(

)(
),(

22

22

1











x

xI
xq

 
))(2(

))(2(
)1(),( 1











xx

xxI
xxq

 )2(
)2(

)1(
)( 21 xxI

xx

x
xq 




 


2
10


q

)34(

)35(

)36(

)37(

)38(

)39(

)40(

),(),(),(  xqxqxq xx 



                      The 3rd TSME International Conference on Mechanical Engineering 

               October 2012, Chiang Rai 
 

  

Paper ID 

CST 01 

 
 
 
 
 
 

 
 
 
 
 

Fig. 3 Control diagram. 
 

 
 
 
 
       
 
 

 
 
    
    

Fig. 4 Experimental set-up. 
 

5. Results 

The value of               is set to make the 

system unstable.   The heat generator in the rod is 
turned on about 10 minutes to create the initial 
temperature profile on the rod. The control 
algorithm is then started to control the 
temperatures to the equilibrium temperature.  
Figs. 5, 6 and 7 show the control temperature at 
sensors No.7, 1 and 5, respectively. The graph 

displays the comparison between real rod 
temperatures, simulation and observation.  
All cases yield similar results.  The stability was 
obtained. Fig. 8 shows Temperature distribution 
along the rod before, during and at the end of 
control. 

      

 
 
 
 
 
 
 
 

 
 

Fig. 5 Temperature at sensor No. 7 shows the 
control action.  

 
 

 
 
 
 
 
 

 
 
 
 

Fig. 6 Temperature at sensor No. 1.   
 
 

 
 
 
 
 
 
 

 
 

Fig. 7 Temperature at sensor No. 5.   
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 8 Temperature distribution along the rod. 
Before, during and at the end of control. 

 
 

6. Conclusions 

An application of a backstepping boundary 
control technique to stabilize the temperature of a 

slender rod has been presented. Simulation and 
experimental results illustrate that the control 
method is effective.  
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