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Abstract 

In this work, a wearable wireless automated fall detection system is developed that consists of six 
body-worn inertial and magnetic sensors mounted on subject’s head, chest, waist, right wrist, right thigh 
and right ankle. Each sensor unit measures acceleration, rate of turn and the strength of the Earth’s 
magnetic field along three perpendicular axes (x, y and z). Six volunteers performed a set of movements 
including falls and activities of daily living (ADL). Falls are distinguished from ADL tasks using 
dynamic time warping (DTW), least mean square (LMS), k-nearest neighbor (k-NN) and artificial neural 
network (ANN) classifiers. The best classification rate is achieved by the k-NN algorithm with 99.01% 
specificity, 100% sensitivity and 99.44% accuracy.   
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1. Introduction 
Falls can be defined as involuntary events 

resulting in a person coming to rest on the ground 
[1]. Falls are a public health problem and a health 
threat, especially to adults of age 65 and older. 
Statistics show that one in every three adults 
experiences at least one fall every year. Intrinsic 
factors associated with falls are aging, neurologic 
and orthopedic diseases, vision and balance 
disorders. Extrinsic factors are multiple drug 
usage, slippery floors, poor lighting, loose 
carpets, handrails near bathtubs and toilets, 
electric or power cords, clutter on stairways and 
obstacle. Most falls occur at home; therefore, they 
can be prevented by eliminating environmental 
risk factors at home. However, intrinsic factors 
such as age, gender or mental impairment may 
not be changed. Although a physician can help 
improve some health conditions, there is no 
guarantee that falls can be prevented. 

Fall related serious injuries such as hip 
fractures and head traumas or other complications 
are the leading causes of early death. 67% of 
adults age 85 or older is admitted to a hospital for 
fall related injuries. The highest fall death rate in 
older adults belongs to adults with age 85 or older 
because the hazards of fall related injuries 
increase as age increases. The number of 
hospitalizations due to fall related injuries rises 
each year because of increased population of 
elderly people in the world. As a result, the cost 
of health care is increasing every year. In the 
United States alone, the total charge for older 

adults hospitalized for fall related complications 
were 20 billion dollars in 2011 and it is expected 
to be 48 billion dollars in 2020. Falls are not only 
a threat to elderly people but also to individuals 
living with some neurologic or orthopedic 
diseases. Some diseases such as osteoporosis can 
make the bones of elderly people more fragile 
and more prone to falls than young people. Since 
falls among older adults are a serious and costly 
health problem, they should be detected to reduce 
fall related injuries. There are two types of fall 
detection: user activated and automated systems. 
However, a fall detection system must be 
automated because falls may cause loss of 
consciousness or vice versa.  

Falls can be detected by using various 
automated methods such as camera systems, 
smart floors and sensors. Each of these systems 
has its own advantages and disadvantages. 
Automated fall detection systems can be divided 
into two categories: active and passive sensing 
[2]. In active sensing, falls are detected by 
sensors attached to the subject’s body. These 
sensors are usually accelerometers, and falls are 
detected by thresholding the total acceleration. 
For passive sensing, smart floors or camera 
systems detect falls by monitoring floor 
vibrations or images. However, passive sensing 
has some major disadvantages. Smart floors and 
camera systems need a studio environment; the 
person who is being monitored has to live in this 
restricted area. The installation cost of smart floor 
system is higher than other systems. Although 
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camera systems are cost-effective, privacy is of 
concern. Moreover, continuous monitoring may 
cause stress on the subject, and may subsequently 
cause changes in the subject’s original 
movements. Furthermore, passive sensing 
systems force subjects to live in a restricted area, 
and therefore reduce the quality of life of the 
subjects.          

Active sensing systems do not need a studio 
environment and can also operate both indoors 
and outdoors. Recent advances in Micro Electro 
Mechanical Sensors (MEMS) have significantly 
reduced the weight, size and cost of inertial 
sensors as well as made active sensing method 
using MEMS sensors easy to implement and cost-
effective. MEMS sensors, especially 
accelerometers have been widely used in various 
studies [3-7] because they offer great sensitivity 
and specificity. However, since there is no 
common set of experimental trials, comparing the 
results among various studies is very difficult.  

An ideal fall detection system should be able 
to distinguish falls from ADLs with 100% 
specificity and 100% sensitivity. Although some 
studies were able to produce these incredible 
results in laboratories, these systems produce 
poor results with real-life users, who are not 
involved in the tests. To reduce performance loss 
and enable result comparison among various 
studies, a standard set of fall and ADLs tests is 
necessary [8].  

Recently, a set of movements including falls 
and ADLs was proposed by Abbate et al. [9]. In 
this work, these movements were performed by 
six young volunteers and were recorded with six 
wireless body-worn inertial and magnetic sensors 
(Fig. 1). There were 20 falls and 16 ADL events 
and each test was repeated five times by each 
volunteer. Falls were distinguished from ADLs 
using different classifiers: dynamic time warping 
(DTW), least mean square (LMS), k-nearest 
neighbor (k-NN) and artificial neural networks 
(ANN) methods. The best classification rate was 
achieved with the k-NN algorithm with 99.44% 
accuracy. The same work provides some 
guidelines in fall detection experiments and 
construction of the database. We tried to 
incorporate most of the suggestions in [8, 9] in 
this study. 

This paper is organized as follows. The 
details of the experiments are given in Section 2. 
Feature extraction, classification process and 
signal processing algorithms are described in 
Section 3. Results and conclusions are given in 
Section 4. 

 

2. Experiments 
With Erciyes University Ethics Committee 

approval, Fall and ADL tasks were performed by 
six young healthy volunteers (three males and 
three females) at Erciyes University Clinical 
Research and Technology Centre. Males are 21, 
23 and 27 years old with body masses of 81, 78 
and 67 kg and heights of 174, 180 and 176 cm, 
respectively. Females are 21, 21 and 19 years old 
with body masses of 51, 47 and 47 kg and heights 
of 170, 157 and 166 cm, respectively. Table. 1 
and Table. 2 show the simulated falls and ADL as 
performed by the subjects. There are 36 tests 
total, and each test was repeated 5 times by each 
volunteer, resulting in a total of 1,080 records   
(36 tasks x 5 repetitions x 6 volunteers).  
2.1. Materials 

Tests were recorded wirelessly with a remote 
PC over RF. Volunteers were given six wireless 
miniature inertial and magnetic sensors. Sensors 
were mounted on subject’s head, chest, waist, 
right wrist, right thigh and right ankle with 
special strap sets as shown in Fig. 2. Sensors used 
in this project are a part of the MTw development 
kit and produced by Xsens Technologies [10]. 
This kit includes six MTw sensor units. Each unit 
has one tri-axial accelerometer, one tri-axial 
gyroscope and one tri-axial magnetometer with 
the respective range of ±120 m/s², ±1,200 deg/s 
and ±1.5 Gauss and one atmospheric pressure 
meter with the range of 300-1100 hPa. However, 
pressure data were not used in classification. 
These sensors sent measurement data over RF to 
a radio station unit called Awinda Station. This 
unit was connected to a remote PC with USB 
interface and sensors were monitored/recorded in 
real time.   

   A record contains acceleration, rate of turn 
and the strength of the Earth’s magnetic field 
along three perpendicular axes (x, y and z). A 
sampling frequency of 25 Hz was defined. 
Sensors were calibrated before each volunteer 
started the experiments. Sensors were 
programmed with MT Manager Software coming 
with MTw Development Kit. Raw data were 
captured and recorded with the same program 
interface.  

MT Manager Software guarantees capturing 
all data which are generated by the sensors up to 
32 MTw units. MTw units can detect packages 
which are lost during the transmission when 
facing transient data loss in the RF transmission 
immediately retransmit the lost packages to the 
Awinda Station.  
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Fig. 1 MTw unit (reprinted from 
http://www.xsens.com/en/mtw) 

All sensor units were mounted on a subject’s 
body tightly with special apparatus. These straps 
set help to obtain realistic body movements and 
prevent sensors from unwanted shocks or 
accelerations. In the literature, sensors are 
generally attached to a subject’s body with a tape 
or rubber. However, such apparatus cannot 
connect sensors tightly and may be loosened 
during the experiments. Wireless data 
transmission is another advantage of our system 
because cables can disturb a subject when s/he 
performs the experiments, while wireless sensors 
allow a subject to move freely. Therefore, natural 
movements were more likely to be obtained from 
our experiments.   

Fig. 2 Sensor replacement on a subject’s body.  

2.2. Tests 
A set of experiments including falls and 

ADLs were performed by six young healthy 
volunteers. Experiments contain 20 falls and 16 
ADLs as shown in Table. 1 and Table. 2. 

Table. 1 Simulated falls [9] 
 Description 
1 From vertical going forward to the floor 

2 
From vertical going forward to the floor 
with arm protection 

3 From vertical going down on the knees 

4 
From vertical going down on the knees 
and then lying on the floor 

5 
From vertical going down on the floor, 
ending in right lateral position 

6 
From vertical going down on the floor, 
ending in left lateral position 

7 
From vertical going on the floor and 
quick recovery 

8 
From vertical going on the floor and slow 
recovery 

9 
From vertical going on the floor, ending 
sitting 

10 
From vertical going on the floor, ending 
lying 

11 
From vertical going on the floor, ending 
lying in right lateral position 

12 
From vertical going on the floor, ending 
lying in left lateral position 

13 
From vertical going on the floor, ending 
lying 

14 
From vertical going on the floor with 
subsequent recovery 

15 
From vertical going on the floor, ending 
lying 

16 
From vertical going on the floor with 
subsequent recovery 

17 
From standing going on the floor 
following a vertical trajectory 

18 
From standing going down slowly 
slipping on a wall 

19 
From vertical standing on a podium going 
on the floor 

20 
From lying, rolling out of bed and going 
on the floor 

 
Fall experiments were performed by six 

volunteers and each task was repeated five times. 
A total of 600 records (20 tests x 6 volunteers x 5 
repetitions) were achieved from the fall tests. Soft 
crash mats were used in both simulated falls and 
ADL to prevent the subjects from injuries. 
Moreover, the volunteers were asked to wear a 
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helmet, knee pads, elbow pads and wrist guards 
for extra safety precautions.  

Table. 2 ADL actions [9] 
 Description 

21 From vertical lying on the bed 

22 From lying to sitting 

23 
From vertical sitting with a certain 
acceleration on a bed (soft surface) 

24 
From vertical sitting with a certain 
acceleration on a chair (hard surface) 

25 
From vertical sitting with a certain 
acceleration on a sofa (soft surface) 

26 
From vertical sitting in the air exploiting 
the muscles of legs 

27 Walking forward 

28 Running 

29 Walking backward 

30 Bending of about 90º 

31 
Bending to pick up an object on the 
floor 

32 Stumbling with recovery 

33 Walking with a limp 

34 Going down, then up 

35 
Bending while walking and than 
continue walking 

36 Coughing or sneezing 

ADL were also performed by six volunteers, 
and each test was repeated five times, resulting in 
the total of 480 records (16 ADLs x 6 volunteers 
x 5 repetitions).   

3. Signal processing 
A raw dataset of 1,080 actions, 600 falls and 

480 ADLs was created after the experiments. 
Each record lasts about 15s on the average and 
consists of accelerations, rates of turn and the 
Earth’s magnetic field along the three axes (nine 
values in total). The experiments were recorded 
by a PC using MT Manager software; therefore, 
the records were in a special file format. These 
files were extracted and converted to ASCII text 
format with the same software, resulting in six 
different files. Each file represents an individual 
sensor at the head, chest, waist, right wrist, right 
thigh and right ankle.  
3.1 Feature extraction 

In this work, the sensor mounted on the waist 
of a subject was selected as a reference vector 
because the waist is the closest point to the 
body’s center of gravity. Moreover, the waist will 
move only if the trunk moves. However, the head 
or the other outer parts of the body such as the 

arms can move even if the trunk is stationary. The 
maximum activity region is defined with the total 
acceleration vector (TAV) in the waist sensor 
(Eq. (1)). Here, xA , yA  and zA  are the 

acceleration ratio measured along the three 
axes.  

 
222
zAyAxATAV    (1) 

Maximum total acceleration index was 
searched in the waist record, and this index was 
defined in terms of time. Then, the two second 
intervals before and after this point were saved. 
Other parts of the record were deleted. These new 
records consist of 101 samples (25Hz x 2s + TAV 
index + 25Hz x 2s). The other five sensor’s 
records were downsampled by using the same 
time index. The new dataset contains six 101 
samples of long sensor data for each test. 
Accelerations, rates of turn and the Earth’s 
magnetic fields along 3-axes result in 101 rows 
and 9 columns of data. Each column of data can 

be given as 1n  vector (  TndddD ,...,, 21 ). We 
applied a set of feature extraction techniques to 
these data. These features are the minimum and 
the maximum values, the mean value, variance, 
skewness, kurtosis, autocorrelation sequence (the 
first 5 sequences) and the peaks of the discrete 
Fourier transform (DFT) of the data with 
corresponding frequencies (the first 5 values with 
corresponding frequencies) [11]. 

Feature extraction process was applied to all 
1,080 records. Produced features were collected 
in the following order: first, an arrangement was 
made for individual sensor units. For a single 
sensor unit, the first five features are the 
minimum, maximum, mean, skewness and 
kurtosis values. This process was applied for each 
sensor in three axes, and 45 features (9 axes x 5 
values) were created after this process. 
Autocorrelation produced 45 features (9 axes x 5 
features). DFT produced 5 frequencies and 5 
amplitudes values, resulting in a total of 90 
features (9 axes x 10 values). Therefore, each 
sensor is defined by 180 features (45 + 45 + 90). 
Each test includes 6 sensors and it is defined by 
1,080 features (180 features x 6 sensors). A 
feature vector, which defines a test, was created 
by feature vectors of 6 sensors. Feature vectors of 
sensors were collected to create feature vectors of 
individual performing tests at the head, chest, 
waist, right wrist, right thigh and right ankle.  
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3.2 Classification 
Our final data contain a large number of 

features because each test contains 1,080 features 
and there is a total of 1,080 records. This large 
number of features can increase the 
computational complexity and the difficulty of 
training and testing the classifiers. As a result, 
feature dataset was reduced using principal 
component analysis (PCA) method [12]. The 
content of each feature vector was reduced from 
1,080 to 30, and the final dataset was normalized 
between 0 and 1.    

600 fall events were distinguished from 480 
ADL events using four different classifiers: 
DTW, LMS, k-NN and ANN. The performances 
of each classifier are given in the following 
section.  

4. Results 
The final dataset (30 samples x 1,080 tasks) 

was divided into two subsamples; 20% was used 
for training and 80% was used for testing the 
classifiers. A comparison of the algorithms´ 
performance is given in Table. 3. TP is True 
Positive, TN is True Negative, FP is False 
Positive, FN is False Negative, Sp is Specificity, 
Se is Sensitivity and Acc is Accuracy. All of the 
classifiers distinguish falls from ADLs with more 
than 95% accuracy. However, k-NN classifier is 
the best performer with 99.44% accuracy, 99.01% 
specificity and 100% sensitivity.  

k-NN algorithm searches the training objects 
that are the most closely related to the given 
objects. Class decision is given by maximum 
neighborhoods. There is no predefined k value 
because this algorithm is sensitive to local data. 
Obtained by trial and error, k = 7 was used in this 
work. Usually, small k increases the variance, 
while large k decreases sensitivity. Therefore, 
proper k values strongly depend on the local 
dataset [13]. LMS and DTW also achieve good 
performances, and there is no false alarm in the 
LMS results, similar to the k-NN results.  

In the LMS algorithm, signals are compared 
with the predefined two average reference vectors 

which are average ADL reference vector and 
average fall reference vector, and minimum sum 
square error is searched [11]. Accuracy of LMS is 
98.98% with 11 false alarms and 98.2% 
specificity. LMS also did not miss any fall event 
and 600 fall events are distinguished from ADLs 
with 100% sensitivity. 

DTW algorithm searches optimal alignment 
between two given time dependent sequences. It 
can match the similar waveform even if there is a 
phase shift in the time axis [14]. Accuracy of 
DTW is 97.96% and its sensitivity is 99.78%, and 
its specificity is 96.61%. There are 21 false 
alarms and one missed fall event in the results of 
DTW. The number of the false alarms may be 
ignored but system has to detect any single fall 
events.  

ANN is one of the most preferred classifiers 
in the pattern recognition area [12]. In this work 
we used a multi-layer perceptron ANN model 
which has four layers which are one input layer 
with 30 neurons, two hidden layers and one 
output layer has one output neuron. We used 
Levenberg Marquart (LM) algorithm for training. 
The results of ANN are not as good as k-NN, 
LMS and ANNs. 11 falls are missed and 26 false 
alarm exist. However accuracy of ANN is still 
more than 95%.  
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Table. 3 Classification performance of the algorithms in terms of specificity, sensitivity and accuracy 

 
 

DTW LMS k-NN ANN 

Conditional 
Positive 

Conditional 
Negative 

Conditional 
Positive  

Conditional 
Negative 

Conditional 
Positive  

Conditional 
Negative 

Conditional 
Positive  

Conditional 
Negative 

Test Outcome 
Positive 

TP 
599 

FP 
1 

TP 
600 

FP 
0 

TP 
600 

FP 
0 

TP 
588 

FP 
12 

Test Outcome 
Negative 

FN 
21 

TN 
459 

FN 
11 

TN 
469 

FN 
6 

TN 
474 

FN 
26 

TN 
454 

Sp % 96.61 98.2 99.01 95.77 

Se % 99.78 100 100 97.43 

Acc % 97.96 98.98 99.44 96.48 
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