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Abstract 

Position and force control of a planar robot has been implemented in this research such that the 

end effector can follow a specified trajectory and the xy-plane force at the tip of end effector can maintain 

at a constant level. A compliant control uses a force sensor attached at the end effector to perform a force 

feedback. First the position and force controls of the end effector are designed using a mathematical 

model of a A255 CRS 4-axis manipulator arm in Matlab/Simulink, then these controllers are applied to a 

real CRS arm with motion constraint only in the vertical or xy-plane, using LabVIEW 2010. An 

application of this CRS arm control is to simulate a small surgery operation. 
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1. Introduction 

Both industry and medical applications move 

toward automated systems for various tasks. 

Robots, especially a manipulator arm, are one of 

the key components in automation; for example, 

pick-and-place, welding, small surgery. Main 

advantages of robotic arm are its precision, 

accuracy, and extended operational period.     

Recently, researches on force control of robot 

manipulator arm have been implemented for 

various applications. Wim Witvrouw and Sean 

Graves and etc. [1] developed a joystick 

controller for operators that can sense force from 

robot end effector.  A force sensing and control of 

a surgical robot were studied by Peter  

Kazanzides and etc. [2] such that artificial organs 

can be transplanted. Qinjun DU designed a 

minimally invasive surgical robot along with its 

force control, this robot can be controlled by a 

surgeon to perform a tumor operation with good 

accuracy for a small wound. Moreover, Satoshi 

Komada and etc. [3] has worked on a robust force 

control based on estimation of environment, all 

external disturbances; such as friction force, 

gravity and external force, were compensated in 

the controller. 

This research focuses on a compliant control 

of A255 CRS 4-axis manipulator arm. Section 2 

introduces the mathematical model and associated 

parameters as well as hardware component of the 

CRS robot arm. The dynamic simulation of the 

compliant control, implemented by 

Matlab/Simulink, is described in Section 3. The 

experimental results of the compliant control are 

performed by LabVIEW 2010 on the CRS robot 

arm in Section 4. Finally, Section 5 summarizes 

all results of the compliant control as well as 

states future improvement.  

 

2. Modeling and Hardware 

The A255 CRS robot arm has 5 degree of 

freedom as well as consists of three main linkages 

and 5 revolute joints. Mass and moment of inertia 

of all links are estimated to be m1 = 0.81 kg, m2 = 

0.52 kg, m3 = 0.35 kg, I1 = 0.39 kg-m
2
, I2 = 0.27 

kg-m
2
, and I3 = 0.18 kg-m

2
, using the 

SolidWorks, as shown in Fig. 1. However, in this 

research the CRS robot motion is constrained 

with the vertical or xy-plane, only 3 links or 3 

rotation angles, represented in Fig. 2, are 

employed for the compliant control. 

The Denavit-Hartenberg parameters [1] for 

the CRS robot arm are given in Table 1. 

 

Table. 1 Denavit-Hartenberg parameters of CRS 

robot arm 

Axis αi ai di θi 

1 0 l1= 0.255 m 0 q1 

2 0 l2 = 0.254 m 0 q2 

3 0 l3 = 0.252 m 0 q3 

 

 
Fig. 1 All three links of the CRS arm in SolidWorks 

(left) and the CRS arm and its hardware (right) 
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where li is the i-th link length and ti is the i-th 

rotation joint angle. According to Table 1, all α 

and d parameters are set to zero because the robot 

motion is restricted only in the vertical plane. 

 

 
 
 
 
 

 
 

Fig. 2 Frame assignment and three degree-of-

freedom of the CRS robot arm for the compliant 

control 

 

A position of the CRS end effector can be 

calculated using a forward kinematics. The end 

effector position can be obtained by multiplying 

the following rotation matrix, given in Eq. (1), 

with a vector of the robot base. 

 

     c123     -s123     0     l2*c12+ l1*c1+l3*c123 

     s123      c123     0     l2*s12+l1*s1+l3*s123 

       0         0       1                  0            (1) 

       0         0       0                  1                          

 

Using the Lagrangian mechanics, a dynamic 

equation of the robot arm can be computed from 

total energy or Lagrangian function (L), which 

consists of the kinetic energy (K) and potential 

energy (U) in Eq. (2). 

UKL                          (2) 

Then, the robot dynamics can be derived from the 

Lagrange’s equation, given by the following  

         3,2,1    

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
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
rQ
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L

q

L

dt

d
r

rr


      (3) 

where rr qq , are correspondingly the r-th joint 

rotation angle and angular velocity. rQ is the r-th 

joint torque. Vectors of the joint angle vector and 

angular velocity are denoted by qq , , 

respectively. Finally, the robot dynamic equation 

can be rewritten in terms of a mass matrix 

(  qM ), coriolis and centripetal matrix 

(  qqC , ), gravitational matrix (  qG ), and joint 

torque vector ( Q ), as in Eq. (4) below. All 

matrices are described in detail in Appendix.  

                   QqGqqqCqqM   ,           (4) 

 

Three motors of the A255 CRS robot arm are 

driven by ASP-090-36 Accelus motor drive in a 

torque mode for 3-axis torque control. A NI PCI-

6221 data acquisition card is interfaced between 

motor drives and a computer that uses LabVIEW 

as the control software. Two ARM7 

microcontrollers are employed to count motors’ 

encoder pulses. Fig. 3 shows the A255 CRS robot 

hardware connection. 

 

 
 

Fig. 3 Overall schematic diagram of the CRS arm 

hardware connection. 

 

3. Dynamic Simulation of Compliant Control 

For the force control of the CRS robot arm, a 

stiffness or compliant control is selected for 

implementation simplicity in this research. To 

perform the dynamic simulation of the force 

control, a stiffness of the contacted object (Ke) is 

assumed to be a constant. Thus, the normal force 

from the robot end effector acts on the contacted 

surface, is a expressed by Eq. (5). 

)( ee xxKf                            (5) 

where xe, xc, and xd are the equilibrium position 

of the contacted surface, instantaneous position of 

the end effector, and desired or command 

position of the end effector, respectively, as 

shown in Fig. 4. 

End effector

ex

cx

dx
 

Fig. 4 Compliance of the contacted surface due to 

the end effector motion 

 

A control law for the compliant control with 

gravity and friction compensation is given in Eq. 

(5) so that the normal force from the end effector 

can be specified. 
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)()())(( qFqGKKqJτ pv
  xxT     (5) 

 

where 
cd xxx  is the position error along the 

perpendicular direction to the contacted surface. 

)(qJ is a task-space jacobian of the end effector. 

A joint kinetic friction, )(qF  , is neglected in this 

study. Kv and Kp are correspondingly diagonal 

derivative and proportional gains. 

Let consider the end-effector motion along a 

slant or contacted surface that tilts 45 degree up 

from the x-axis, as shown in Fig. 5. First, a 

coordinate that is tangential and perpendicular to 

the slant surface is defined to be (u,v). Second, 

initial joint angles (θ1, θ2 θ3) = (90°,-90°, 0°) for a 

CRS arm pose, displayed in Fig. 5, gives (ui,vi) = 

(0,0) or a starting location. Third, an end location 

is at (uf,vf) = (0.19,0.3). The compliant control 

regulates all three-motor torque such that the end 

effector moves from the initial position along the 

slant surface. Moreover, the contact forces in 

tangential direction (f2) and in normal direction 

(f1) are maintained at constant levels. 

45o

90o

x

y

u

v

 
Fig. 5 Coordinate of the robot base (x,y) and of 

the slant surface (u,v). 

 

Dynamic simulations of the compliant control 

using Eq. (4) and (5) are implemented in 

Matlab/Simulink. Fourth, assuming the stiffness 

of the contacted surface, Ke, equals to 200 N/m 

and tuning controller gains, (Kp, Kv) = (150,300), 

the CRS robot arm motion from the dynamic 

simulation is shown in Fig. 6. The result reveals 

that the controller kept the end-effector 

contacting with the 45° incline surface from the 

initial to end position very well. Three joint 

torques are shown in Fig. 7. The torque from the 

first joint varies from 2 N-m to about 0 N-m 

within 5 seconds during the contact operation. 

For the second joint, the torque maintains at a 

constant value of 1.98 N-m until 3 sec then 

decreases to 1.5 N-m.  

Torque of three joints is shown in Fig. 7. The 

torque from the first joint varies from 2 N-m to a 

small value close to 0 N-m within 5 seconds 

during the contact operation. For the second joint, 

the torque maintains at a constant value of 1.98 

N-m until 3 sec then decreases to 1.5 N-m. 

Torque in the third joint is kept constant at 0.4 N-

m, which make the end effector contact the 

incline surface at all time. Fig. 8 displays the 

normal force (f1) and tangential force (f2) at the 

end effector. The normal force initially equals to 

0 and approaches its steady state value of 0.85 N 

within the first 3 sec. Similarly, the tangential 

force increases from 0 to 0.18 N after 3 sec as 

well. This dynamic simulation result confirms 

that the end effector force can be controlled at the 

specified value. 

 

45o

x

u

v

y

 
Fig. 6 Dynamic simulation of the CRS robot arm 

trajectory using the compliant control along the 

45° incline surface. 

 

 
Fig. 7 Three joint torques computed from the 

compliant control 
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Fig. 8 Normal force (f1) and tangential forces (f2) 

of the CRS end effector exerting on the 45 incline 

surface 

 

4. Experimental Results 

The stiffness controller of A255 CRS robot 

arm is developed in LabVIEW 2010. The control 

law with gravity compensation in Eq. (5) is a 

main controller with 1) three joint angles 

(θ1,θ2,θ3), calculated from three encoders and 2) 

the desired position (xd,yd) that is needed to 

transform to (ud,vd) in the tangential and  

perpendicular coordinate of the slant surface, as 

inputs. Outputs of the compliant controller are 

three joint torques, which need to convert to 

current commands in the form of PWM and 

analog signals for three Accelus drives. A 

simplified block diagram is shown in Fig. 9 for 

the compliant control of the CRS robot arm. 

 

Compliant

Controller

CRS Robot 

Arm

1 2 3, ,  1 2 3, ,  

yd

xd

 
Fig. 9 Block diagram for the compliant control 

along with input and output for the controller 

 
For the compliant control of the CRS 

robot arm along the 45° slant surface similar to 

the dynamic simulation, 1-inch thick foam board 

is used as a contacted surface on the incline plane 

and initial joint angles (θ1,θ2,θ3) are (66°,-65°,6°). 

When the end effector of the CRS arm pushes and 

drags along the incline foam board, the joint 

angles, shown in Fig. 10, and joint torque, shown 

in Fig. 11, can be measured from motor encoders 

and computed from the compliant controller, 

respectively. According to Fig. 10, the first joint 

angle increases 20°, the second joint decreases 

50°, and the third joint increases 35° during the 

compliant control operation between 2 and 2.7 

sec. In the steady-state position after 3 sec, the 

end effector of the CRS robot arm approaches a 

position (u,v) = (0.184,0.3) m along the slant 

surface. These experimental results well agree 

with the dynamic simulation results, shown in 

Fig. 6. Note that before 2.1 sec, the CRS end 

effector approaches and maintains the initial 

position or initial joint angles using the PID 

position and then at 2.1 sec, the CRS arm is 

controlled by the compliant control. Furthermore, 

Fig. 11 exhibits the joint torque, computed by the 

compliant control. During the compliant control 

operation, all joint torques decrease from positive 

to negative values. The first joint produces the 

largest increment of -7 N-m at 2.1 sec, while 

torque difference of the second and third joints is 

decreased by 1.5 N-m. 

 
Fig. 10 Joint angles during the compliant control 

operation between 2.1 and 2.7 sec. 

 
Fig. 11 Joint torques during the compliant control 

operation between 2.1 and 2.5 sec. 

 

5. Conclusion 

Using the compliant or stiffness 

controller, the A255 CRS robot arm can be 

controlled from the initial position (u,v) = (0,0) to 

the final position (u,v) = (0.19,0.3) m as well as 
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can maintain the contacted force both in the 

dynamic simulation and the experimental result. 

However, the response in the experimental result 

is much faster than that in the dynamic simulation 

by at least 4 sec.  

To further compare between dynamic 

simulation and experiment, the force sensor will 

be attached to the end effector of CRS robot arm. 

Moreover, different geometries of the contacted 

surface will be employed to demonstrate the 

compliant control operation of the A255 CRS 

robot arm. 
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8. Appendix 
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