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Abstract 

A formation-keeping control methodology is proposed that includes both attitude and orbital control 
requirements in the presence of model uncertainties. The approach develops the requisite control in a 
two-step process. First, a nominal system model that provides our best assessment of the real-life 
uncertain system is defined, and a nonlinear controller that satisfies the required attitude and orbital 
requirements of this nominal system is developed. The controller allows the nonlinear nominal system to 
exactly track the desired attitude and orbital requirements. Since this closed-form controller assumes that 
the model of the physical system—the nominal system—has no errors or uncertainties, in the second step 
an additional additive controller that compensates for model uncertainties is developed. The desired 
trajectory of the nominal system is used as the tracking signal, and a controller based on a generalization 
of the concept of a nonlinear damping is developed. The resulting closed-form control causes the desired 
attitude and orbital requirements of the nominal system to be met in the presence of unknown, but 
bounded, model uncertainties.  

Keywords: Satellite Formation Keeping, Orbital Control, Attitude Control, Model Uncertainties, Nonlinear 
Damping Control 

 

1. Introduction 

The use of small multiple satellites flying in 
formation holds out the potential for reducing 
total mission costs, performing certain missions 
more flexibly and efficiently, and making 

possible advanced applications such as space 
interferometry and high resolution imaging [1]. 
This paper addresses the formation-keeping 
problem in the presence of model uncertainties. 
We consider a satellite formation in which a set 
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of follower satellites follows, in a desired 
manner, a leader satellite. The leader satellite 
may be a real or fictitious satellite located at a 
specified location relative to the different 
follower satellites that constitute the formation. 
Our aim is to develop a control methodology so 
that each follower satellite in the formation 
achieves a desired attitude and a desired 
formation configuration in the presence of 
uncertainties. The relative trajectories of the 
follower satellites that comprise the formation 
(with respect to the leader satellite) may be 
static in time or they may be required to change 
dynamically in some prescribed, desired 
manner. 

In the current paper, the control methodology 
is developed in two steps. The first step uses 
the concept of the fundamental equation to 
provide the closed-form control force and torque 
needed to track the attitude and orbital 
requirements, for the nominal system model of 
each satellite. The nominal model is the model 
adduced from our best assessment of the 
characteristics of the real-life system. Once the 
nominal system model is fixed, no 
linearizations/approximations are made in the 
description of the dynamics, and the nonlinear 
controller that exactly satisfies the desired 
attitude and orbital requirements is obtained. In 
the next step of the control methodology, this 
nonlinear controller is augmented by an 
additional additive controller based on a 
generalization of the notion of a nonlinear 
damping. This then provides a general approach 

to the control of the uncertain satellite system, 
leading to a set of closed-form nonlinear 
controllers that satisfy the desired attitude and 
orbital requirements. 

2. The Description of Constrained 
Mechanical Systems 

As stated earlier, we denote the nominal 
system as our best assessment of the actual 
real-life system, that is, it is the best 
deterministic model of the system at hand. It is 
useful to conceptualize the description of such a 
nominal multi-body system in a three-step 
procedure given by the fundamental equation 
[2]-[10]. Following this procedure, we obtain the 
explicit equation of motion of the nominal 
system as 

 1( ) ( ),c T TMq Q Q Q A AM A b Aa− += + = + −  (2.1)  

where q is the generalized coordinate n-vector, 
0M >  is the n by n mass matrix and Q is an n-

vector, called the ‘given’ force, A is a p by n 
constraint matrix whose rank is r, and b is a p 
constraint vector, 

1a M Q−= , and the superscript 
“+” denotes the Moore-Penrose (MP) inverse of 
a matrix.  

The control force that the uncontrolled 
system is subjected to, because of the presence 
of the control requirements can be explicitly 
expressed as 

1( ) : ( ( ), ( ), ) ( ) ( ).c c T TQ t Q q t q t t A AM A b Aa− += = −  

  (2.2)  
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Pre-multiplying both sides of (2.1) by 1M − , 
the acceleration of the nominal system that 
satisfies the constraints can be expressed as 

1 1 1( ) ( ) : ( ).T T cq a M A AM A b Aa a M Q t− − + −= + − = +  

  (2.3)  

The generalized control force given in Eq. 
(2.2) is predicated on our best assessment of 
the system assuming that this assessment 
provides an accurate enough deterministic 
model. Since in real-life situations uncertainties 
always exist, this control force ( )cQ t needs to be 
modified to compensate for these uncertainties.  

Thus, in order to ensure that the follower 
satellites, whose models are not exactly known, 
track the orbital and attitude trajectory 
requirements of the nominal system, that is, 
they track the requirements of our best-estimate 
system, Eq. (2.1) has to be replaced with 

( , ) ( , , ) ( ) ( ),c u
a c c a c cM q t q Q q q t Q t Q t= + +  

  (2.4)  

where cq  is the generalized coordinate n-vector 
of the controlled actual system and uQ  is the 
additional control force n-vector that 
compensates for the fact that the model is 
known only imprecisely, which we shall develop 
in closed form. The n by n matrix 

: 0aM M Mδ= + >  is the actual mass matrix of 
the real-life system which is a function of cq  
and t, Mδ is the uncertainty in the mass matrix 
which may include, among others, say, 
uncertainties in the masses and moments of 

inertia of the satellites; the actual ‘given’ force 
vector is taken to be :aQ Q Qδ= +  where the n-
vector Q denotes the nominal ‘given’ forces, and 

Qδ  denotes the n-vector of the changes in the 
‘given’ force that are caused by the presence of 
the uncertainties, such as solar wind. We shall 
denote the unconstrained acceleration of the 
actual uncertain system as 1:a a aa M Q−= .  

We now refer to Eq. (2.4) as the description 
of the ‘controlled actual system,’ or ‘controlled 
system,’ for short. Pre-multiplying both sides of 
Eq. (2.4) by 1

aM − , the acceleration of the 
controlled system can be expressed as 

 1 1( ) .c
c a a a cq a M Q t M M u− −= + +  (2.5)  

Here 1:a a aa M Q−=  and :u
cQ Mu= , where cu  is 

the additional generalized acceleration provided 
by the additional control forces uQ  to 
compensate for uncertainties in our knowledge 
of the actual system and is developed in 
Section 5. 

3. Formation-Keeping Equations of Motion: 
The Controlled Nominal System 

It is assumed that there are N  follower 
satellites and that either a real or a fictitious 
leader satellite leads this N -satellite formation. 
The ith follower satellite has a nominal mass 

( )im  and has a diagonal inertia matrix, ( )iJ , in 
which the nominal moments of inertia along its 
body-fixed principal axes of inertia are placed. 

It is assumed that the position vector of the 
center of mass of the ith follower satellite in the 
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Hill frame [11] is given by ( ) ( ) ( ) Ti i ix y z⎡ ⎤⎣ ⎦  and 

its orientation is described by the quaternion 
( ) ( ) ( ) ( ) ( )

0 1 2 3

Ti i i i iu u u u u⎡ ⎤= ⎣ ⎦ . Then we define the 

generalized displacement 7-vector as 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 1 2 3 ,  1,2, , .

Ti i i i i i i iq t x y z u u u u i N⎡ ⎤
⎣ ⎦= =  

  (3.1)

3.1 Uncontrolled Orbital Motion 

The inertial orbital motion of the ith follower 
satellite orbiting the spherical Earth is governed 
by the relation [13] 

( )2 2 2

( ) ( )

( ) ( ) ( )
3/2

( ) ( ) ( )( ) ( )

,

i i

i i i
ECI

i i ii i

X X
GM

a Y Y
X Y ZZ Z

⊕

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥

+ +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

  (3.2)

where ( ) ( ) ( ) Ti i iX Y Z⎡ ⎤⎣ ⎦  is the position vector 

of the center of mass of the ith follower satellite 
in the inertial frame or Earth-centered inertial 
(ECI) frame [13], G  is the universal gravitational 
constant, and M⊕  is the mass of the Earth. The 
corresponding acceleration represented in the 
Hill frame is given in Ref. [14] as 

( ) 2 2

( ) ( )

( ) ( ) ( )

( ) ( )

( )

( )
3/22( ) ( ) ( ) ( )

0 2
0

        .

i i
L L L

i i i
Hill

i i

i
L

i

i i i i
L

r x r x r
a RS y RS y

z z

x r
GM

y
x r y z z

⊕

⎡ ⎤ ⎡ ⎤+ +⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= − − −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤+
⎢ ⎥− ⎢ ⎥

⎡ ⎤+ + + ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 

  (3.3)

Here, ( ) ( ) ( ) Ti i ix y z⎡ ⎤⎣ ⎦  is the position vector of 

the center of mass of the ith follower satellite in 
the Hill frame, Lr  is the distance from the center 
of the Earth to the leader satellite, and R  is an 
orthogonal rotation matrix that maps the ECI 
frame to the Hill frame, that is, 

 

( ) ( )

( ) ( )

( ) ( )

.

i i
L

i i

i i

x r X
y R Y
z Z

⎡ ⎤ ⎡ ⎤+
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3.4)

Each element of the matrix R is given in Ref. 
[14]. The matrix S  in Eq. (3.3) is the active 
rotation matrix, which is the transpose of R . 

3.2 Uncontrolled Rotational Motion 

We begin with Lagrange’s equation 

 ( )
( ) ( )

( ) ( ) ( )
( ) ( ) , , ,
i i

i i i
ui i

d T T u u t
dt u u
⎛ ⎞∂ ∂

− = Γ⎜ ⎟∂ ∂⎝ ⎠
 (3.5)

where ( ) ( ) ( ) ( ) ( )
0 1 2 3

Ti i i i iu u u u u⎡ ⎤= ⎣ ⎦  is the 

quaternion 4-vector of the ith follower satellite, 

( )( ) ( ) ( ), ,i i i
u u u tΓ  is the ‘given’ generalized force 

vector, and ( )iT  is the rotational kinetic energy 
of the ith follower satellite which is given by 

 { } { }( ) ( ) ( ) ( )1 ˆ .
2

Ti i i iT Jω ω=  (3.6)

Here, the 4 by 4 augmented inertia matrix, ( )ˆ iJ , 
is defined as 

( )
0

( ) ( )
0( )

( ) ( )

( )

0 0 0
0 0 0 0ˆ : ,

0 0 0 0
0 0 0

i

i i
i x

i i
y

i
z

J
J J

J
J J

J

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 

  (3.7)
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where ( )
0
iJ  is an arbitrary positive number, and 

( )i
xJ , ( )i

yJ , ( )i
zJ  are the moments of inertia along 

the principal axes of the ith follower satellite. 
Also, the 4 by 1 augmented angular velocity 
vector, { }( )iω , is related with quaternions by 

 { }( ) ( ) ( )2i i iE uω = , 1, 2, , ,i N=  (3.8)

where { }( ) ( ) ( ) ( )0
Ti i i i

x y zω ω ω ω⎡ ⎤= ⎣ ⎦  and the last 

three elements, described in the body frame, 
are the angular velocities about the ECI frame 
of reference, and the 4 by 4 quaternion matrix 

( )iE  is defined by 

( ) ( ) ( ) ( )
0 1 2 3

( ) ( ) ( ) ( ) ( )
( ) 1 0 3 2

( ) ( ) ( ) ( ) ( )
1 2 3 0 1

( ) ( ) ( ) ( )
3 2 1 0

: .
T

i i i i

i i i i i
i

i i i i i

i i i i

u u u u
u u u u u

E
E u u u u

u u u u

⎡ ⎤
⎢ ⎥⎡ ⎤ − −⎢ ⎥= =⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎣ ⎦ ⎢ ⎥
− −⎢ ⎥⎣ ⎦

 

  (3.9)

Substituting Eq. (3.8) into Eq. (3.6) yields the 
kinetic energy in terms of quaternions 

 ( ) ( ) ( ) ( ) ( ) ( )ˆ2 .
T Ti i i i i iT u E J E u=  (3.10)

Then, assuming that there is no applied torque 
(i.e. ( ) 0i

uΓ = ), we now apply Lagrange’s 
equation under the assumption that the 
components of the quaternion 4-vector are all 
independent of each other, to obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ4 8 4 .
T T Ti i i i i i i i i i i iE J E u E J E u E J E u= − −

 

  (3.11)

This relation can be written in the form 
( ) ( ) ( )i i i
u uM u Q=  by setting ( ) ( ) ( ) ( )ˆ: 4

Ti i i i
uM E J E= , and 

( )i
uQ  to be the right-hand side of Eq. (3.11). It is 

noted that the mass matrix ( ) ( ) ( ) ( )ˆ4
Ti i i i

uM E J E=  is 
symmetric and positive definite, so it has always 
its inverse. 

It is important to stress that up to now we 
have assumed that each component of the 
quaternion vector ( )iu  is independent of the 
others. However, to represent a physical 
rotation of a rigid body we require the 
quaternion ( )iu  to have unit Euclidean-norm so 
that 

 2 2 2 22( ) ( ) ( ) ( ) ( )
0 1 2 32

1.i i i i iu u u u u= + + + =  (3.12)

After differentiating twice, we have the following 
control requirement  

2 2 2 2

( )
0
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
0 1 2 3 0 1 2 3( )

2
( )
3

i

i
i i i i i i i i

i

i

u
u

u u u u u u u u
u
u

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ = − − − −⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

  (3.13)

so that [15] 

 
( ) ( ) ( ) ( ) ( )

0 1 2 3
i i i i i

uA u u u u⎡ ⎤= ⎣ ⎦ , 

( )2 2 2 2( ) ( ) ( ) ( ) ( ) ( )
0 1 2 3 : .i i i i i i

ub u u u u N u= − − − − = −  
(3.14)

The resulting rotational equation of motion for 
the ith follower satellite is thus given by Eq. (2.3)  

 ( )-1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1 ,
2

Ti i i i i i i iu E J J N u uω ω⎡ ⎤=− −⎣ ⎦  (3.15)

where ( )
1

iE , ( )iJ , and ( )( )iN u  are defined in 

Eqs. (3.9), (3.7), and (3.14), respectively, and 
( )iω⎡ ⎤⎣ ⎦  is a skew-symmetric matrix defined by 
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( ) ( )

( ) ( ) ( )

( ) ( )

0
: 0 .

0

i i
z y

i i i
z x

i i
y x

ω ω
ω ω ω

ω ω

⎡ ⎤−
⎢ ⎥⎡ ⎤ = −⎢ ⎥⎣ ⎦
⎢ ⎥−⎣ ⎦

 (3.16)

3.3 Dynamics of Coupled Orbital and 
Rotational Motion of the Nominal System 

In this subsection, we combine the attitude 
and orbital dynamics. Defining the 7 by 1 
generalized displacement vector ( )( )iq t  as in 
Eq. (3.1), we have the following equation of 
uncontrolled motion for each follower satellite 
from Eqs. (3.3) and (3.15) 

( ) ( )

( )1

-1( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

,1
2

T

i i i

i
Hill

i i i i i i i

a t M Q

a

E J J N u uω ω
−

=

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎡ ⎤− −⎣ ⎦⎢ ⎥⎣ ⎦

 

  (3.17)

where the 7 by 7 mass matrix is 

 
( )

( ) 3 3 3 4
( )

4 3

0
,

0

i
i

i
u

m I
M

M
× ×

×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (3.18)

and ( ) ( ) ( ) ( )ˆ: 4
Ti i i i

uM E J E= is previously defined. 

 When the trajectory/orientation requirements 
are imposed, the generalized control force 
required to follow them is explicitly obtained by 
Eq. (2.2), as shall be shown in the next 
subsection. In addition, we can relate the 4 by 1 
generalized quaternion torque, ( )i

uΓ , which is 
determined by Eq. (2.2), to the 3 by 1 physically 
applied torque ( ) ( ) ( ) ( ) Ti i i i

x y z⎡ ⎤Γ = Γ Γ Γ⎣ ⎦ , about 

the body axis of the ith follower satellite, through 
the relation [15] 

 ( )
( )

0 1 ,  1,2, , .
2

i
ui E i N⎡ ⎤

= Γ =⎢ ⎥Γ⎣ ⎦
 (3.19)

3.4 Determination of the Control Forces 
and Torques Using the Fundamental 
Equation 

In this subsection, an explicit form of the 
generalized control force and torque is obtained 
via the fundamental equation, assuming no 
uncertainties in the masses and the moments of 
inertia of the follower satellites. These forces 
are obtained based on the description of the 
nominal system. Also, it is assumed for brevity 
that there is only one follower satellite in the 
formation and the leader satellite is in a circular 
orbit with constant radius of Lr  around a uniform 
spherical Earth. Now we consider the following 
attitude and orbital requirements: (1) The 
follower satellite’s orbit should be on a circle 
with constant radius 0ρ  when projected onto the 
yz-plane of the Hill frame with the leader 
satellite located at the center of the circle (this 
orbit is called the projected circular orbit (PCO) 
[16]); and, (2) The follower satellite, more 
specifically, the z-axis of its body frame, points 
to the center of the Earth at all times. (3) 
Besides these two requirements, we shall 
impose the additional constraint that the 
quaternion 4-vector of the follower satellite 
should have unit norm. These trajectory 
requirements are summarized as: 
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2x z= , ( )0 cosy tρ ω= , ( )0 sin ,z tρ ω=    (3.20a)

   [ ] 0,b

X
z P Y

Z

−⎡ ⎤
⎢ ⎥− =⎢ ⎥
⎢ ⎥−⎣ ⎦

           (3.20b) 

and 

 ( ) 2 2 2 2
0 1 2 3 1.N u u u u u= + + + =         (3.20c) 

The position vector in the ECI frame in Eq. 
(3.20b) can be transformed to the one in the Hill 
frame, and vice versa, by using the relation 

 
11 21 31

12 22 32

13 23 33

,
L L

T

X x r R R R x r
Y R y R R R y
Z z R R R z

+ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (3.21) 

 

where the components of the transformation 
matrix R  are given in Ref. [14]. In Eq. (3.20b), 
[ ]bz  is the skew-symmetric matrix given by 

 [ ]
0 1 0
1 0 0
0 0 0

bz
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.22) 

corresponding to the unit vector along the z-axis 
of the body frame [ ]ˆ 0 0 1 T

bz = , and P in Eq. 
(3.20b) is a transformation matrix that maps the 
ECI frame into the body frame of the follower 
satellite which is of the form [15] 

( ) ( )
( ) ( )
( ) ( )

11 12 13

21 22 23

31 32 33

2 2 2 2
0 1 2 3 1 2 0 3 0 2 1 3

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 0 1 2 3 0 1 2 3

2 2

  2 2 .

2 2

P P P
P P P P

P P P

u u u u u u u u u u u u

u u u u u u u u u u u u

u u u u u u u u u u u u

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤+ − − − +
⎢ ⎥
⎢ ⎥= + − + − −
⎢ ⎥
⎢ ⎥− + − − +⎣ ⎦

 

  (3.23) 

Eq. (3.20b) originates from the fact that the 
desired pointing axis (i.e. z-axis of the body 
frame) is constrained to point along the vector 
connecting the follower satellite and the center 
of the Earth in the ECI frame, [ ]TX Y Z− − − . 
The components of this vector, in turn, are 
transformed into the body frame by the 
transformation matrix P , and the cross product 
of this transformed vector and the z-axis of the 
body frame is zero because they are parallel. 

Then differentiating the constraints 3.20 to 
the form ([2]-[10]) 

 

 
1 1

2 2

3 3

: : ,
A b

Aq A q b b
A b

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3.24) 

the control force and torque for the nominal 
system to satisfy the given orbital and attitude 
requirements are explicitly determined by Eq. 
(2.2). 

4. Generalized Nonlinear Damping 
Controller 

Our aim in this section is to develop a 
compensating controller that can guarantee 
tracking of the nominal system’s trajectory in the 
presence of uncertainties in the actual satellite 
system. To do this we use a generalization of 
the concept of a nonlinear damping [17]. The 
formulation permits the use of a large class of 
control laws that can be adapted to the practical 
limitations of the specific compensating 
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controller being used and the extent to which 
we want to compensate for the uncertainties. 

To obtain the additional controller cu , we first 
define the tracking error for the satellite system 
(difference between the state of the controlled 
actual system and the controlled nominal 
system), 

 ( ) ( ) ( ).ce t q t q t= −  (4.1)

To ensure the motion of the controlled actual 
system closely tracks the motion of the nominal 
system and thereby satisfies the control 
requirements (2.4), we apply an additional 
compensating controller from a generalized idea 
of the nonlinear damping, which is explicitly 
given as, 

 ( )1 2 2( ) ( ) ( ),cu e t f e ke t= − + −  (4.2)

where 1 2: ,  :e e e e= = , and 0k >  is arbitrary small 
positive constants. The i-th component, 2( )if e , 
of the n-vector 2( )f e  is defined as 

 ( )2 2,( ) / ,  1,  . . .,    i if e g e i nε= =  (4.3)

where 2,ie  is the i-th component of the n-vector 

2e , ε  is defined as any small positive number 
and the function ( )2, /ig e ε  is any arbitrary 

strictly increasing ,continuous, odd function of 

2,ie on the interval ( , )−∞ +∞  and it goes to ∞  as 

2,ie  goes to ∞ . 

Main Result: The closed-from generalized 
damping controller for the uncertain system, 

( )1 2 2

( )

       ( ) ( ) ( ) ( ) ,

c
a c a c

c
a

M q Q Q t Mu

Q Q t M e t f e ke t⎡ ⎤⎣ ⎦

= + +

= + − + +  

  (4.4)

where: 

(i) the control force ( )cQ t  is given by (2.2) 

 1( ) ( ) ( )c T TQ t A AM A b Aa− += −  (4.5)

and is obtained on the basis of the nominal 
system;  

(ii)  0k >  is arbitrary small positive number; and 

(iii) 2( )f e  is any arbitrary strictly increasing odd 
continuous function of 2e  on the interval 
( , )−∞ +∞  and goes to ∞  as 2e  goes to ∞ , 

will cause the actual system to track the 
trajectory of the nominal system.  

5. Numerical Results and Simulations for 
Attitude and Orbital Controls 

Let us consider a system in which there is 
only one follower satellite whose nominal mass 
is 120 kgm = . Also, its nominal moments of 
inertia along its respective body-fixed axes are 
taken to be ( ) 210 10 7.2  kg mJ diag= ⋅ . The 
value of 0J  is chosen as 215 kg m⋅  (see Eq. 
(3.7)). By nominal we mean our best-estimate of 
these parameters for the actual, real-life, 
follower satellite. As previously assumed, the 
leader satellite is in a circular orbit around a 
uniform spherical Earth and the radius of its 
orbit is 67 10  mLr = × . For the sake of simplicity, 
the inclination ( Li ) of the leader satellite’s orbit 
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is taken to be 0  (that is, the leader satellite is 
just above the equator), and it is assumed that 
the leader satellite is on the X-axis of the ECI 
frame at the initial time ( 0t = ). The leader 
satellite’s mean motion and orbital period are 
given by, respectively, 

 

3
3 1.0780 10  rad/s,L
L

GM
n

r
−⊕= = ×

32 5.8285 10  s 1.6190 hr.L
L

P
n
π

= = × =  
(5.1) 

We choose 2 LP  (two orbital periods of the 
leader satellite) as the duration of time used for 
numerical integration and the three orbital and 
attitude requirements are applied to the 
formation system, which introduced in Section 3. 
For the radius of PCO in Eq. (3.20a), 

4
0 m7.0 10  ρ = ×  is chosen and the constant 

rotational frequency ω  (see Eq. (3.20a)) is set 
to equal Ln  in Eq. (5.1) 

We choose the initial conditions for orbital 
motion of the follower satellite as  

( ) ( ) ( )
( ) ( ) ( )

4          0 0 m, 0 7.0 10  m,  0 0 m,

0 37.7347 m/s,  0 0 m/s,  0 75.4695 m/s,

x y z

x y z

= = × =

= = =
 

  (5.2) 

and the initial conditions for attitude motion as 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

0 1

4
2 3

4
0 1

4
2 3

0 0.0707372,  0 0.997482,  

0 0.00498729,  0 3.536772 10 ,

0 0.00870185,  0 6.143960 10 ,  

0 5.403876 10 ,  0 0.

u u

u u

u u

u u

−

−

−

= =

= = ×

= − = ×

= × =

 

  (5.3) 

Application of the control force (Eq. (2.2)) yields 

the trajectories of the motion of the follower. 

Figure 1 represents the orbit of the follower 
satellite projected on the yz -plane (left) and xz

-plane (right) in the Hill frame, respectively. The 
scale is normalized by 0ρ . In Fig. 2, the time 
history of each component of the quaternion for 
the follower satellite is shown where time is 
normalized by LP . In Fig. 3 we show the 
obtained control forces per unit mass of the 
follower satellite in order to follow the desired 
orbital requirements. The force components are 
described in the Hill frame, and time is 
normalized by the period of the leader satellite 
(i.e. LP ). Figure 4 illustrates the control torques 
per unit mass of the follower satellite for 
satisfying the attitude requirements. The torque 
components are described in the body frame of 
the follower satellite using Eq. (3.19). Figure 5 
represents errors in satisfying the desired 
nominal trajectories assuming no uncertainties, 
described by Eq. (3.20). Instead of Eq. (3.20b), 
we use the angle θ  between the z-axis of the 
body frame and the vector [ ]TP X Y Z− − −

connecting the follower satellite and the center 
of the Earth. We denote these errors by (a) 
( )1 2e t x z= − , (b) ( ) ( )2 0 cose t y tρ ω= − , (c) 
( ) ( )3 0 sine t z tρ ω= − , (d) ( )4e t θ= , and (e) 
( ) 2 2 2 2

5 0 1 2 3 1e t u u u u= + + + − . 
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Fig. 1 Constrained motion of the nominal 
system with no uncertainties assumed 

 

Fig. 2 Time history of quaternions of the 
nominal system with no uncertainties 

assumed 

 

Fig. 3 Required control forces to satisfy the 
nominal orbital constraints 

 

Fig. 4 Required control torques to satisfy the 
nominal attitude constraints 

 

Fig. 5 The errors in the satisfaction with the 
nominal constraints 

To see how the response of the assumed 
nominal system can be altered through the 
effect of the uncertainty in the modeling 
process, we consider for reasons of simplicity 
only the uncertainties in the mass m  of the 
follower satellite and in its moments of inertia 

xJ , yJ , and zJ . We estimate that the actual 
values of these parameters differ from our 
nominal (best-estimate) values by a random 
uncertainty of 10%± of the nominal values 
chosen. For illustrative purposes, we pick a 
specific system with 12,mδ =  1,xJδ =  1,yJδ =

and 0.72zJδ =  and perform a simulation again 
using Eq. (2.3), except that we replace our best-
estimate mass matrix of the uncontrolled system 
with the actual mass matrix :aM M Mδ= + , 
where M  is defined in Eq. (3.18), with all other 
parameter values the same as previously 
prescribed. We note that the elements of the 7 
by 7 symmetric matrix aM  are given in a 
manner similar to Eq. (3.18). In this case, we 
have replaced  and  im J  in Eq. (3.18) with 
m m mδ= +  and i i iJ J Jδ= +  respectively. 
Using the control forces ( ( )cQ t ), we obtain 
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 1 1: ( , , ) ( ).c
a aq M Q q q t M Q t− −= +  (5.4) 

The trajectories ( ,q q ) of the system Eq. (5.4) 
with the actual mass and moments of inertia are 
determined. 

Figure 6 shows these orbital trajectories of 
the actual system projected on the yz -plane 
(left) and xz -plane (right) in the Hill frame, 
respectively. Figure 7 depicts the time history of 
quaternions of the actual uncertain system. Both 
figures are different from those obtained from 
the nominal system, showing that a miss-
assessment of the mass and moments of inertia 
of the follower satellite can have significant 
consequences. The resulting quaternions satisfy 
neither the Earth-pointing constraint nor the unit-
norm constraint. 

 

Fig. 6 Motion of the actual system when 
10%±  uncertainties in the mass and 

moments of inertia of the follower satellite are 
involved 

 

Fig. 7 Quaternions of the actual system when 
10%±  uncertainties in the mass and 

moments of inertia of the follower satellite are 
involved 

We next select the structure and parameters 
for the controller cu . We choose  

 3
2 2,( ) ( / ) ,i if e e ε=  (5.5) 

where 0ε >  is a suitable small number, and 
obtain in closed-form the additional controller 
needed to compensate for uncertainties in the 
actual system as 

 ( ) 3
1 2 2( ) ( / )cu t e ke e ε= − + −  (5.6) 

Pre-multiplying both sides of Eq. (4.4) by 
1

aM −  and using the additional controller Eq. 
(5.6), we obtain the closed-form equation of 
motion of the controlled actual system 

( )( )1 1 1/3
1 2 2( ) ( / )c

c a a aq a M Q t M M e ke e ε− −= + − + +  

  (5.7) 

which will cause the actual system to track the 
trajectory of the nominal system, thereby 
compensating for the uncertainty in our 
knowledge of the actual system. 

For our simulation we choose: 1k =  and 
210ε −= . At the scales shown, the controlled 

trajectories of the follower satellite projected on 
the yz -plane and xz -plane in the Hill frame fall 
exactly on those shown in Fig. 1. The errors in 
tracking the attitude and the orbital trajectories 
of the nominal system are shown in Fig. 8 and 
Fig. 9. In Fig. 8, we see that there are minute 
differences between the position coordinates of 
the nominal and the controlled trajectories of the 
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follower satellite, and the attitude differences, as 
represented by the quaternion vectors, are also 
small as seen in Fig. 9.  

Figures 10 and 11 respectively show the 
additional control forces and torques per unit 
mass of the follower satellite in order to 
compensate for the uncertainties in the mass 
and moments of inertia. Both additional control 
forces and torques are seen to be small when 
compared with those obtained from the nominal 
system (Fig. 3 and Fig. 4, respectively).  

We note that use of the specified smooth 
cubic function 2( )if e  given in (5.5) eliminates 
chattering. 

 

Fig. 8 Orbital errors between the nominal and 
controlled systems 

 

Fig. 9 Attitude (quaternion) errors between 
the nominal and controlled systems 

 

Fig. 10 Required additional control forces  

 

Fig. 11 Required additional control torques  

6. Conclusions 

In this paper, a simple method for the 
formation-keeping problem with attitude and 
orbital requirements, in the presence of model 
uncertainties has been developed.  

The main contributions of the paper are the 
following: 

1. We obtain the exact closed-form 
solution (for the nominal dynamical system 
assumed) to the problem of formation-keeping 
with both attitude and orbital requirements. 
Unlike previous research, we directly start from 
the nonlinear equation, and the exact control 
force and torque are easily obtained, 
considering all the nonlinearities of a multi-
satellite system. 

2. Since the control force and torque to be 
applied to the follower satellites are explicitly 
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obtained in closed-form and the method is not 
computationally intensive, it can be easily used 
for on-orbit, real-time control of maneuvers, 
especially for formations with many satellites, for 
which the underlying dynamics is highly 
nonlinear. 

3. A general closed-form controller for 
keeping a satellite formation so that it satisfies 
desired attitude and orbital requirements in the 
presence of model uncertainties has been 
developed. This is obtained by adding to the 
nominal controller an additional control that 
compensates for the uncertainties. Uncertainties 
in the two dynamical quantities M and Q that 
characterize the system can be accommodated. 

4. The control function 2( )if e  and the 
parameters that define the compensating 
controller can be chosen depending on a 
practical consideration of the control 
environment, and on the extent to which the 
compensation of uncertainties is desired. Thus 
when dealing with large, complex multi-body 
systems greater flexibility is afforded.  For 
example, the use of a cubic function may 
obviate the need for a high-gain controller and 
would also allow the continuous control, thereby 
preventing chattering.  

5. For brevity, we have illustrated through 
numerical examples uncertainties that are 
related to the mass and moments of inertia of 
the follower satellite. However, the formulation 
of the current methodology encompasses both 
general sources of uncertainties—uncertainties 

in the description of the physical system and 
uncertainties in knowledge of the ‘given’ force 
applied to the system. The closed-form 
controller developed herein is therefore general 
enough to be applicable to complex dynamical 
system of multi-satellites in which the 
uncertainties in the given force may be 
important. 

7. References 

[1] Aoude, G. S., How, J. P., and Garcia, I. M., 
“Two-Stage Path Planning Approach for 
Designing Multiple Spacecraft Reconfiguration 
Maneuvers,” The 20th International Symposium 
on Space Flight Dynamics, Annapolis, Maryland, 
September 2007. 

[2] Udwadia, F. E. and Kalaba, R. E., “What Is 
the General Form of the Explicit Equations of 
Motion for Constrained Mechanical Systems,” 
Journal of Applied Mechanics, Vol. 69, No. 3, 
2002, pp. 335-339. 

[3] Udwadia, F. E., “Equations of Motion for 
Mechanical Systems: A Unified Approach,” 
International Journal of Non-Linear Mechanics, 
Vol. 31, No. 6, 1996, pp. 951-958. 

[4] Udwadia, F. E., “Nonideal Constraints and 
Lagrangian Dynamics,” Journal of Aerospace 
Engineering, Vol. 13, No. 1, 2000, pp. 17-22. 

[5] Kalaba, R. E. and Udwadia, F. E., 
“Equations of Motion for Nonholonomic, 
Constrained Dynamical Systems via Gauss’s 



               The 4th TSME International Conference on Mechanical Engineering 
                                                                  16-18 October 2013, Pattaya, Chonburi   
 
  

 
 

 
 

 
AME-1001 

Principle,” Journal of Applied Mechanics, Vol. 
60, No. 3, 1993, pp. 662-668. 

[6] Udwadia, F. E., “A New Perspective on the 
Tracking Control of Nonlinear Structural and 
Mechanical Systems,” Proceedings of the Royal 
Society A, Vol. 459, 2003, pp. 1783-1800. 

[7] Udwadia, F. E., “Equations of Motion for 
Constrained Multibody Systems and Their 
Control,” Journal of Optimization Theory and 
Applications, Vol. 127, No. 3, 2005, pp. 627-
638. 

[8] Udwadia, F. E., “Optimal Tracking Control of 
Nonlinear Dynamical Systems,” Proceedings of 
the Royal Society A, Vol. 464, 2008, pp. 2341-
2363. 

[9] Udwadia, F. E. and Kalaba, R. E., “A New 
Perspective on Constrained Motion,” 
Proceedings of the Royal Society A, Vol. 439, 
1992, pp. 407-410. 

[10] Schutte, A. and Udwadia F. E., “New 
Approach to the Modeling of Complex Multi-
body Dynamical Systems,”Journal of Applied 
Mechanics, Vol. 78, 2011, pp. 021018-1 to 11. 

[11] Cho, H. and Yu, A., “New Approach to 
Satellite Formation-Keeping: Exact Solution to 
the Full Nonlinear Problem,” Journal of 

Aerospace Engineering, Vol. 22, No. 4, 2009, 
pp. 445–455. 

[12] Udwadia, F. E., Schutte, A. D., and Lam, 
T., “Formation Flight of Multiple Rigid Body 
Spacecraft,” The 48th AIAA/ASME/ASCE/AHS/ 
ASC Structures, Structural Dynamics, and 
Materials Conference, Paper AIAA 2007-2391, 
Honolulu, Hawaii, April 2007. 

[13] Vallado, D. A., Fundamentals of 
Astrodynamics and Applications, 2nd ed., The 
Space Technology Library, El Segundo, 2001. 

[14] Cho, H. and Udwadia, F. E., “Explicit 
Solution to the Full Nonlinear Problem for 
Satellite Formation-Keeping,” Acta Astronautica, 
Vol. 67, Nos. 3-4, 2010, pp. 369-387. 

[15] Udwadia, F. E. and Schutte, A. D., “An 
Alternative Derivation of the Quaternion 
Equations of Motion for Rigid-Body Rotational 
Dynamics,” Journal of Applied Mechanics, Vol. 
77, No. 4, 2010, pp. 044505-1 - 044505-4. 

[16] Sabol, C., Burns, R., and McLaughlin, C. 
A., “Satellite Formation Flying Design and 
Evolution,” Journal of Spacecraft and Rockets, 
Vol. 38, No. 2, 2001, pp. 270-278. 

[17] Khalil, H. K., “Nonlinear Systems,” Prentice-
Hall, Upper Saddle River, New Jersey, 2002, pp. 
551-589

 


