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Abstract 

The so-called flat shell triangular element is commonly used for plate structural analysis by finite 

element method (FEM). This element type is a combination of membrane and plate bending elements for 

plane stress and plate bending problems, respectively. Without any special treatment, solving plate 

structural problems by this approach leads to a numerical singularity problem due to the lack of in-plane 

rotation variable. The constant strain triangular (CST) element deals with the singularity difficulties by 

assuming a fictitious rotational stiffness. On the other hand, the Allman triangular (AT) element includes 

an in-plane rotational degree of freedom to avoid the singularity problem. In this study, both membrane 

elements were combined with the Discrete Kirchhoff triangular (DKT) plate bending element to solve plate 

structural problems. The performances of the two element combinations have been evaluated by several 

numerical examples. The numerical solutions obtained from both of the element combinations are in 

agreement with exact solutions when FEM mesh used is sufficiently fine. However, the AT and DKT 

element combination could suffer membrane locking problem in some cases when using relatively coarse 

mesh. 

Keywords: Plate structural analysis; Finite element; Flat shell triangular element; Constant strain 

triangle; Allman triangle 

 

1. Introduction 

In plate structural analysis by finite element 

method (FEM), the derivation based on shell 

element involves the complexity and 

complications in computing the element curvature. 

Therefore, another approach based on the 

assemblage of flat-faced elements, i.e. the so-

called flat shell triangular element, has been 

widely employed [1]. This element type is a 

combination of membrane and plate bending 

elements which are commonly used in plane 

stress and plate bending analyses, respectively. 

Membrane element contains two in-plane 

translational degrees of freedom while plate 

bending element has one out-of-plane 

translational degree of freedom and two rotational 

degrees of freedom. Although the in-plane 

rotational degree of freedom does not exist in the 
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membrane element formulation, it can appear 

after the co-ordinate transformation from local to 

global [2]. If all elements sharing a node are 

coplanar, the absence of the in-plane rotational 

degree of freedom leads to zero values in the 

stiffness matrix and therefore results in the 

numerical singularity problem [1-3]. 

There have been two membrane elements 

proposed for tackling the singularity issue, which 

are the constant strain triangular (CST) and 

Allman triangular (AT) elements. The CST 

element assumes the stiffness for in-plane 

rotational degree of freedom [1-6]. On the other 

hand, the AT element is a higher order 

membrane element including the in-plane 

rotational degree of freedom [7-9]. In this work, 

the performances of the CST and AT elements 

have been compared. Both membrane elements 

were combined with the widely-used discrete 

Kirchhoff triangular (DKT) plate bending element 

[10] to solve several plate structural problems. 

 

2. Governing Equations 

The governing equations for the in-plane 

deformation and transverse deflection of a plate 

lying in a local x-y coordinate system are briefly 

described in this section.  

2.1 In-Plane Deformation 

The in-plane deformation is governed by the 

two-dimensional equilibrium equations [11]: 

0
xyx

xF
x y

τσ ∂∂
+ + =

∂ ∂
 (1)  

and 

0
xy y

yF
x y

τ σ∂ ∂
+ + =

∂ ∂
  (2). 

The stress components xσ , yσ  and xyτ  are 

related to the strain components by HookeCs law: 

{ } [ ]{ }Cσ ε=   (3) 

where { }σ  and { }ε  are defined by: 

{ }T

x y xyσ σ σ τ =     (4) 

and 

{ }T u v u v

x y y x
ε

 ∂ ∂ ∂ ∂
= + ∂ ∂ ∂ ∂ 

 (5). 

For plane stress problem, the material stiffness 

matrix [ ]C  is: 

[ ]
2

1 0

1 0
1

0 0 (1 ) / 2

E
C

ν
ν

ν
ν

 
 =  −
 − 

 (6). 

2.2. Transverse Deflection 

The transverse deflection w  in z-direction 

normal to the x-y plane of a thin plate is given by 

the equilibrium equation [12]:  

( )
4 4 4

4 2 2 4

2
,

w w w
D p x y

x x y y

 ∂ ∂ ∂
+ + = 

∂ ∂ ∂ ∂ 
 (7) 

where ( ),p x y  is the applied lateral load normal 

to the plate and D  is the bending rigidity defined 

by: 

( )
3

2
12 1

Et
D

ν
=

−
  (8) 

where E  is YoungCs modulus, ν  is PoissonCs 

ratio and t  is thickness of the plate. 

 

3. Finite Element Derivation 

The FEM derivation for plate analysis by 

using the two element combinations, CST+DKT 

and AT+DKT, is presented in this section. 

3.1 Constant Strain Triangle (CST) 

The three-node CST element assumes a 

linear displacement distribution over the element. 

The FEM equations can be derived by applying 

the method of weighted residuals to the governing 

differential equations for the in-plane deformation, 
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Eqs. (1) and (2), leading to the FEM equations in 

the form: 

[ ]{ } { }m m mK Fδ =  (9) 

where the vector { }mδ  contains the element 

nodal unknowns of the in-plane displacements in 

x and y directions. There are two in-plane 

displacements (u and v) per node, i.e. six 

unknowns per element. 

The element stiffness matrix [ ]mK  in Eq. (9) 

is defined by: 

[ ] [ ] [ ][ ]T

m m m mK B C B tA=  (10) 

where the strain-displacement interpolation matrix 

[ ]mB  is given in Ref. [11]. The vector { }mF  on 

the right-hand-side of Eq. (9) contains the applied 

mechanical forces at element nodes in x and y 

directions. 

3.2 Allman Triangle (AT) 

The three-node AT element is a plane 

triangular element with two displacements and 

one rotation at each corner as shown in Fig. 1(a). 

In the element, the tangential and normal 

displacements tu  and nu  along the side of the 

triangle are assumed to have linear and quadratic 

distribution, respectively [7]. For example, along 

edge 1-2, edge-tangent displacement is: 

1 2

3 3

1t t t

s s
u u u

L L

 
= − + 
 

 (11) 

where 3L  is the length of edge 1-2 and the edge-

normal displacement is: 

1 2 12

3 3 3 3

4
1 1n n n n

s s s s
u u u u

L L L L

   
= − + + −   
   

 (12). 

The mid-edge normal displacement is relative 

to the straight-edge condition:
 

( )3
12 2 1

8
n z z

L
u θ θ= −  (13) 

where 1zθ and 2zθ  are in-plane nodal rotations. 

Considering the area coordinates of triangle [2], 

the element displacements along x and y 

directions are: 

1 1 2 2 3 3 12 3 1 24 cosnu u u u uζ ζ ζ θ ζ ζ= + + +  

23 1 2 3 31 2 3 14 cos 4 cosn nu uθ ζ ζ θ ζ ζ+ +
 

(14) 

and 

1 1 2 2 3 3 12 3 1 24 sinnv v v v uζ ζ ζ θ ζ ζ= + + +  

23 1 2 3 31 2 3 14 sin 4 sinn nu uθ ζ ζ θ ζ ζ+ +  (15) 

where iθ  is the angle between the x axis and the 

outward normal to the edge of length iL . From 

the displacement fields in Eqs. (14) and (15), the 

Allman triangle element stiffness matrix can be 

constructed. 

Considering the six-node linear strain triangle 

element (LST) [2] in Fig. 1(b), the displacements 

in x and y directions of node 4 can be written as: 

( )12
4 1 2 2 1

1 1

2 2 8
z z

y
u u u θ θ= + − −  (16) 

and 

( )12
4 1 2 2 1

1 1

2 2 8
z z

x
v v v θ θ= + + −  (17). 

For nodes 5 and 6, the expression of the 

displacements can be written in the same pattern. 

Therefore, the relation between the LST and the 

Allman triangle is 

{ } [ ]{ }1 2Tδ δ=  (18) 

where 

{ } { }1 1 1 2 6 6

T
u v u u vδ = L  (19) 

and 

{ } { }2 1 1 1 3 3 3z zu v u vδ θ θ= L  (20). 

[ ]T  is the 12x9 transformation matrix described 

in Ref. [13]. Consequently, the stiffness matrix of 

the Allman triangle can be obtained from the 

stiffness matrix of the LST triangle by the 

relationship: 

[ ] [ ] [ ][ ]T

A LSTk T k T=  (21). 
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(a)      (b) 

Fig. 1 (a) The Allman triangular element.  

(b) The linear strain triangular element. 

3.3 Discrete Kirchoff Triangle (DKT) 

The DKT element assumes a cubic 

distribution of the transverse deflection over the 

element [10]. The FEM derivation can be carried 

out by applying the method of weighted residuals 

to the governing equation for the transverse 

deflection, Eq. (7), leading to: 

[ ]{ } { }b b bK Fδ =  (22) 

where the vector { }bδ  contains the element 

nodal unknowns of the transverse deflections and 

rotations.   

Each node has a transverse deflection in z-

direction and two rotations about x and y 

directions, which are w , xθ and yθ , respectively. 

Therefore, there are nine degrees of freedom per 

element. The element stiffness matrix [ ]bK  and 

the nodal force vector due to the applied lateral 

loads { }bF  are defined by: 

[ ] [ ] [ ][ ]T

b b b

A

K B D B dA= ∫   (23) 

and 

{ } [ ]Tb b

A

F N p dA= ∫  (24) 

where the strain-displacement interpolation matrix 

[ ]bB  is: 

[ ]

31 12

31 12

31 12 31 12
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y y

b

y yx x

H H
y y

H H
B x x

A

H HH H
x x y y

ξ η

ξ η

ξ η ξ η

 ∂ ∂   
+    ∂ ∂    

 ∂ ∂    = − −    ∂ ∂   
 

∂ ∂   ∂ ∂    
− − + +       ∂ ∂ ∂ ∂        

 (25) 

where xH

ξ
∂ 
 
∂ 

, xH

η
∂ 
 
∂ 

,
yH

ξ

∂ 
 
∂ 

and 
yH

η

∂ 
 
∂ 

 are 

given in Ref [10]. The closed-form FEM matrices 

directly used for computer programming are 

described in Ref [14]. 

3.4 In-plane rotation stiffness 

The FEM equation for flat shell element can 

be written in the form: 

[ ] { } { }( ) ( ) ( )ele ele ele
K Fδ =  (26). 

The unknown vector matrix { }( )eleδ  consists of 

six degrees of freedom (i.e., , , , , ,x yu v w θ θ  and 

zθ ) per node. For the combination of CST and 

DKT elements, the element stiffness matrix for 

each node, ( )ele

iK , which is the superposition of 

[ ]mK  and [ ]bK  from Eqs. (10) and (23) can be 

written as: 

[ ] [ ]
[ ] [ ]

2 32 2

( )

3 2 3 3

0 0

0 0

0 0 0

mi

ele

i bi

K

K K

××

× ×

 
 

=  
 
 

 (27) 

The element stiffness matrix contains zero 

values of the stiffness corresponding to the in-

plane rotational degree of freedom, zθ  (or drilling 

degree of freedom [1]). If any node is surrounded 

by coplanar elements, the stiffness matrix 

becomes singular. To deal with this problem, the 

stiffness for the drilling degree of freedom is 

approximated as [1-2]: 

1 0.5 0.5

0.5 1 0.5

0.5 0.5 1
zi

K EAtθ α
− − 

 = − − 
 − − 

 (28) 
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where E  is YoungCs modulus, A  is element area, 

t  is element thickness and α  is an arbitrarily 

chosen number ( 5
10

−  for the present study). 

 

4. Numerical Evaluation 

Three numerical examples were used to 

evaluate the performances of the two element 

combinations, CST+DKT and AT+DKT. 

4.1 Pure Bending of Square Plate  

The 2x2 m
2
 square plate in Fig. 2 is 

subjected to the load xT  along left and right 

edges with the amplitude of 0σ = 100 Pa [7]. The 

YoungCs modulus, PoissonCs ratio, and thickness 

of the plate are 190 GPa, 0.3, and 0.01 m 

respectively. The load xT  varies along y direction 

as: 

02x

y
T

L
σ =  

 
 (29). 

For this problem, the exact solutions of the in-

plane displacement are [7]:  

02
xy

u
E L

σ =  
 

 (30) 

and 
2

0 x y
v

E L

σ ν+ = − 
 

 (31). 

y

x

A

xT

0
σ

0
σ−

0
σ

0
σ−

L

L = 2m

 
Fig. 2 Pure bending of a square plate. 

Since the problem is symmetrical, a quarter 

of the plate was modeled as depicted in Fig. 2. 

The plate is modeled by uniform mesh of 2x2 (9 

nodes), 4x4 (25 nodes), 8x8 (81 nodes) and 

10x10 (121 nodes) intervals. Figs. 3 and 4 show 

the computed displacements in x and y directions 

along the top edge by using 121 nodes. The 

results suggest that both CST+DKT and AT+DKT 

element combinations give accurate displacement 

values at this mesh size. 

Figs. 5 and 6 show the calculated 

displacements at position A in Fig. 2 in x and y 

directions, respectively. The numerical results are 

closer to the exact solutions when node number 

increases. It is noticeable that the solution 

accuracy of the AT+DKT element combination is 

slightly better than that of the CST+DKT (Figs. 5 

and 6). This can be attributed to the fact that the 

order of interpolation function of the AT element 

is higher than that of the CST element.  
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Fig. 3 Result comparison for the displacement in 

x-direction along the top edge. 
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Fig. 4 Result comparison for the displacement in 

y-direction along the top edge. 

4.2E-10

4.4E-10

4.6E-10

4.8E-10

5.0E-10

5.2E-10

5.4E-10

0 50 100 150

exact solution

AT

CST

u
A

(m
)

The number of nodes
 

Fig. 5 Result comparison for the displacement in 

x-direction at point A in Fig. 2. 
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Fig. 6 Result comparison for the displacement in 

y-direction at point A in Fig. 2. 

 

4.2 Cylindrical Shell 

The cylindrical shell in Fig. 7 is subjected to 

the point load P of 100 N [15]. The shell has the 

length L of 10.35 m, radius R of 4.953 m, 

thickness of 0.094 m, YoungCs modulus of 

10.5x10
6
 N/m

2
 and PoissonCs ratio of 0.3125. Due 

to the geometrical symmetry, only one eighth of 

the cylinder was modeled as illustrated in Fig. 8. 

Four mesh sizes, which are 2x2 (9 nodes), 4x4 

(25 nodes), 8x8 (81 nodes) and 10x10 (121 

nodes), were used for mesh sensitivity study. 

x

y

z
A

B

R

L/2L/2

P

P
 

Fig. 7 Cylindrical shell under a point load. 

Fig. 9 shows the computed displacement 

values in z-direction at point A compared to the 

exact solution. The numerical results are closer to 

the exact solution with increasing node number. 

In this problem, the CST+DKT and AT+DKT 

element combinations give similar z-direction 

displacement for every mesh size used. 

x

y

z

P/4

sym.

sym.

sym.

free

A

 
Fig. 8 FEM model of the cylindrical shell problem 

in Fig. 7. 
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Fig. 9 Result comparison for the displacement in 

z-direction at point A in Fig. 7. 

4.3 Pinched Hemispherical Shell 

Fig. 10 shows a hemispherical shell with a 

18° hole on the top subjected to two pairs of 

equal (F = 2 N) but opposite concentrated loads 

(applied in the z=0 plane and along x and y axes) 

[15]. This numerical example was commonly used 

to test the problem of membrane locking of shell 

elements [15]. The hemispherical shell has the 

radius R of 10 m, thickness of 0.04 m, YoungCs 

modulus of 6.825x10
7
 N/m

2
 and PoissonCs ratio of 

0.3. 

z

x yBA

18°

FF

FF

 
Fig. 10 Pinched hemispherical shell. 
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-F /2

B

A

 
Fig. 11 FEM Model of the pinched hemispherical 

shell problem in Fig. 10. 

Only a quarter of the shell can be modeled 

due to its symmetry, as illustrated in Fig. 11. To 

check mesh sensitivity, six mesh sizes were used, 

which are 10x10 (121 nodes), 16x16 (289 nodes), 

20x20 (441 nodes), 24x24 (625 nodes), 32x32 

(1089 nodes) and 40x40 (1681 nodes). Fig. 12 

shows the calculated displacement values in x-

direction at point A compared to the exact 

solution. The CST+DKT element combination 

gives acceptable solution accuracy in every mesh 

size used. On the other hand, solutions from the 

AT+DKT element combination are relatively far 

from the exact solution when using 121 and 289 

nodes. This can be attributed to the problem of 

membrane locking. However, the effect of 

membrane locking seems to disappear when finer 

mesh was used. At 1089 and 1681 nodes, the 

CST+DKT and AT+DKT element combinations 

give similar x-direction displacement solutions. 
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Fig. 12 Result comparison for the displacement in 

x-direction at point A in Fig. 10. 

 

5. Conclusions 

The performances of the CST+DKT and 

AT+DKT element combinations in plate structural 

analysis have been compared. Both element 

combinations give acceptable numerical solutions 

in most cases if FEM mesh is sufficiently fine. 

The results suggest that the solution from the 

AT+DKT element combination is slightly more 

accurate than that from the CST+DKT element. 

This is probably due to the fact that the 

interpolation function of the AT element has a 

higher order than that of the CST element. 

However, the use of the AT+DKT element 

combination could experience membrane locking 

problem in some cases at relatively coarse mesh. 

 

6. Acknowledgements 

This work is financially supported by National 

Metal and Materials Technology Center (MTEC). 

 

7. References 

[1] Zienkiewicz, O.C. and Taylor, R.L. (2005). 

The Finite Element Method for Solid and 

Structural Mechanics, 6
th
 edition, Elsevier 

Butterworth-Heinemann, Oxford. 

[2] Cook, R.D., Malkus, D.S., Plesha, M.E. 

and Witt, R.J. (2002). Concepts and Applications 

of Finite Element Analysis, John Wiley & Sons, 

New York. 

[3] Yang, H.T.Y., Saigal, S., Masud, A. and 

Kapania, R.K. (2000). A survey of recent shell 

finite elements, International Journal for Numerical 

Methods in Engineering, vol.47(1-3), January 

2000, pp. 101 N 127. 

[4] Bathe, K.J. and Ho, L.W. (1981). A 

simple and effective element for analysis of 

general shell structures, Computers and 

Structures, vol.13(5-6), OctoberNDecember 1981, 

pp. 673 N 681. 

[5] Knight, N.F. Jr. (1997). Raasch challenge 

for shell elements, AIAA Journal, vol.35(2), 

February 1997, pp. 375 N 381. 

[6] Nguyen-Thanh, N., Rabczuk, T., Nguyen-

Xuan and Bordas, S.P.A. (2008). A smoothed 

finite element method for shell analysis, Computer 

Methods in Applied Mechanics and Engineering, 

vol.198(2), December 2008, pp. 165 N 177. 

[7] Allman, D.J. (1984). A compatible 

triangular element including vertex rotations for 

plane elasticity analysis, Computers and 

Structures, vol.19(1-2), 1984, pp. 1 N 8. 

[8] Bergan, P.G. (1985). A triangular 

membrane element with rotational degrees of 

freedom, Computer Methods in Applied Mechanics 

and Engineering, vol.50(1), July 1985, pp. 25 N 69. 

[9] Hughes, T.J.R., Masud, A. and Harari, I. 

(1995). Numerical assessment of some 

membrane elements with drilling degrees of 

freedom, Computers and Structures, vol.55(2), 

April 1995, pp. 297 N 314. 

[10] Batoz, J.L., Bathe, K.J. and Ho, L.W. 

(1980). A study of three-node triangular plate 



          The 4
th
 TSME International Conference on Mechanical Engineering 

                             16-18 October 2013, Pattaya, Chonburi 

 

CST-1012 

bending elements, International Journal for 

Numerical Methods in Engineering, vol.15(12), 

December 1980, pp. 1771 N 1812. 

[11] Dechaumphai, P. (2010). Finite Element 

Method: Fundamentals and Applications, 1
st
 

edition, Alpha Science International, Oxford. 

[12] Timoshenko, S. and Krieger, S.W. (1970). 

Theory of Plates and Shells, 3
rd
 edition, McGraw-

Hill, Singapore. 

[13] Cook, R.D. (1986). On the Allman triangle 

and a related quadrilateral element, Computers 

and Structures, vol.22(6), 1986, pp. 1065 N 1067. 

[14] Jeyachandrabose, C., Kirkhope, J. and 

Babu, C.R. (1985). An alternative explicit 

formulation for the DKT plate-bending element, 

International Journal for Numerical Methods in 

Engineering, vol.21(7), July 1985, pp. 1289 N 

1293. 

[15] Wanji, C. and Cheung, Y.K. (1999). 

Refined non-conforming triangular elements for 

analysis of shell structures, International Journal 

for Numerical Methods in Engineering, vol.46(3), 

September 1999, pp. 433 N 455. 

 

 

 

 

 


