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Abstract 

Descriptions of real-life complex multi-body mechanical systems are usually uncertain, and their 
effective control must take into account uncertainties that arise from two general sources: uncertainties in 
the knowledge of the physical system and uncertainties in the ‘given’ forces applied to the system. Both 
categories of uncertainties, which we assume to be time varying and unknown, yet bounded, are 
considered in this paper. In the face of such uncertainties, what is available in hand is therefore just the 
so-called ‘nominal system,’ which is simply our best assessment and description of the actual real-life 
situation. The aim of this paper is to develop a general control methodology, which when applied to a 
real-life uncertain multi-body system, causes this system to track a desired reference trajectory that is 
pre-specified for the nominal system to follow. An example of a simple mechanical system demonstrates 
the efficacy and ease of implementation of the tracking control methodology. 
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1. Introduction 

All real-life physical systems are known only to 

within some bounds of uncertainty that may 

depend on the various levels of their description. 

Controlling the motion of such uncertain complex 

multi-body systems to follow prescribed reference 

trajectories has become a topic of great interest 

during the past few years. The uncertainties that 

arise in complex mechanical systems stem from 

two main sources: (i) uncertainties in our 

knowledge of the physical system, like 

uncertainties in the stiffness and mass 

distribution, the nature of damping, etc.; and, (ii) 

uncertainties in our knowledge of the externally 

applied forces acting on the system, like air drag, 

solar wind, gravity gradients, etc., when 

considering, for example, precise satellite motion 

control. The two sources of uncertainty are 

simultaneously considered in this paper, and in 

what follows, all these uncertainties are included 
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in what we call the ‘real-life mechanical system,’ 

or the ‘actual system,’ whose description is known 

only imprecisely. While not known precisely, it is 

assumed, however, that these uncertainties are, 

in general, time varying and unknown, but 

bounded. Our best assessment of a given actual 

system will be referred to as the ‘nominal multi-

body system,’ or the ‘nominal system,’ for short. 

This term naturally includes the best assessment 

of our characterization of the physical system and 

of the nature of the ‘given’ forces acting on it. 

The aim of this paper is to develop a general 
control methodology for determining the control, 
which when applied to an ‘actual system,’ causes 
this system to follow the trajectory that is pre-
specified by the control requirements imposed on 
the corresponding ‘nominal system,’ and thereby 
to satisfy the control requirements of the nominal 
system. The control methodology is developed in 
a two-step process. The first step uses the 
concept of the fundamental equation to provide 
the closed-form control force needed to satisfy 
the control requirements imposed on the nominal 
system model. Upon specification of the nominal 
system model, no linearizations/approximations 
are made in the description of its dynamics, and 
the nonlinear controller that exactly satisfies the 
desired control requirements is obtained in closed 
form [1-3].  In the next step of the control 
methodology, this nonlinear controller is 
augmented by an additional additive controller 
based on a generalization of the notion of a 
nonlinear damping. This then provides a general 

approach to the control of nonlinear uncertain 
systems, leading to closed-form nonlinear 
controllers that can guarantee satisfaction of the 
prescribed control requirements.  

2. On the Dynamics of the Nominal Multi-
body Systems 

2.1 System description of the nominal 
system 

We begin by introducing the description of the 

nominal system, by which we mean our best 

assessment of the ‘actual system,’ whose 

description is known only imprecisely. It is useful 

to conceptualize the description of such a nominal 

multi-body system in a three-step procedure [4-6]. 

We do this in the following way: 

First, we describe the uncontrolled system in 

which the coordinates are all assumed 

independent of each other. The equation of 

motion of this system is given, using Lagrange’s 

equation, by 

 ( , ) ( , , ),M q t q Q q q t=  (2.1)  

with the initial conditions 

 0 0( 0) ,  ( 0) ,q t q q t q= = = =  (2.2)  

where q is the generalized coordinate n-vector,

0M >  is the n by n mass matrix which is a 

function of q and t, and Q is an n-vector, called 
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the ‘given’ force, which is a known function of ,q

q , and t.  

From Eq. (2.1) we find the acceleration of the 

uncontrolled system given by 

 1: ( , ) ( , , ).a M q t Q q q t−=  (2.3)  

Second, we impose a set of control requirements 

as constraints on this uncontrolled system. We 

suppose that the uncontrolled system is now 

subjected to the m sufficiently smooth control 

requirements given by [6] 

 ( , , ) 0,   1,2,..., ,i q q t i mϕ = =  (2.4)  

where r m≤ equations in the equation set (2.4) 

are functionally independent. The control 

constraints described by (2.4) include all the 

usual varieties of holonomicand/or nonholonomic 

constraints. The presence of the control 

requirements does not permit all the components 

of the n-vectors 0q  and 0q  to be independently 

assigned. We shall assume that the initial 

conditions (2.2) satisfy the m control 

requirements. (If not, the control constraints can 

be expressed in an alternative form so that they 

are asymptotically satisfied [7], see Section 2.2.) 

Differentiating the control requirements (2.4) with 

respect to time t we obtain the relation [8] 

 ( , , ) ( , , ),A q q t q b q q t=  (2.5)  

where A is an m by n matrix whose rank is r, and 

b is an m-vector. We note that each row of A 

arises by appropriately differentiating one of the 

m control requirements in the set given in (2.4). 

In the third step, the equation of motion of the 

‘controlled nominal system,’ or the ‘nominal 

system’ is given by 

 ( , ) ( , , ) ( , , ),cM q t q Q q q t Q q q t= +  (2.6)  

where cQ  is the control force n-vector that arises 

to ensure that the control requirements (2.5) are 

satisfied. The explicit equation of motion of the 

nominal system is given by the fundamental 

equation [3, 7] 

 1( ) ( ),T TMq Q A AM A b Aa− += + −  (2.7)  

wherein the various quantities have been defined 

in the previous two steps and the superscript “+” 

denotes the Moore-Penrose (MP) inverse of a 

matrix. In the above equation, and in what 

follows, we shall suppress the arguments of the 

various quantities unless required for clarity. 

The control force that the uncontrolled system is 

subjected to, because of the presence of the 

control requirements (2.4), can be explicitly 

expressed as 

1( ) : ( ( ), ( ), ) ( ) ( ).c c T TQ t Q q t q t t A AM A b Aa− += = −  

  (2.8)  
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The control force given in (2.8) is optimal in the 

sense that it minimizes the control cost 1cT cQ M Q−

at each instant of time [7, 8].  

Pre-multiplying both sides of (2.7) with 1M − , the 

acceleration of the nominal system that satisfies 

the constraint (2.4) can be expressed as 

1 1 1( ) ( ) : ( ).T T cq a M A AM A b Aa a M Q t− − + −= + − = +  

  (2.9)  

2.2 Example 

To demonstrate the applicability of the control 

methodology, we introduce an example of a 

simple multi-body system. We will continue this 

example all the way through this paper. It is 

straightforward to extend this example to more 

general situations.  

 

Figure 1: Triple pendulum with the datum at the 
origin O 

Consider a planar pendulum consisting of three 

masses 1m , 2m , and 3m  suspended from 

massless rods of lengths 1L , 2L , and 3L  moving 

in the XY-plane (see Figure 1). An inertial frame 

of reference is fixed at the point of suspension, O, 

of the triple pendulum and the X-axis is taken as 

the datum for computing the potential energy of 

the system. Though simple, the system can 

exhibit complex dynamics. 

The masses are constrained to move so that the 

total energy, ( )E t , of the system is required to 

equal the sum of the energies (kinetic and 

potential) of only the two masses m2 and m3, i.e., 

2 3( ) ( ) ( )E t E t E t= + where we have denoted  ( )iE t

as the total energy of mass im . 

The three-step approach described in the last 

sub-section is now illustrated. We begin by writing 

the equation of the uncontrolled system (2.1) 

using the generalized coordinate 3-vector 

1 2 3( ) [ ( ), ( ), ( )]Tq t t t tθ θ θ=  whose components, in the 

absence of the above-mentioned energy control 

requirement, are independent of one another. 

Lagrange’s equations then yield the relation  

 1 2 3 1 2 3( ;  , , ) ( ;  , , )M q m m m q Q q m m m=  (2.10)

where the elements of the 3 by 3 symmetric 

matrix M are given by 

2
11 1 2 3 1 12 2 3 1 2 12

2
13 3 1 3 13 22 2 3 2

2
23 3 2 3 23 33 3 3

( ) ;  ( ) cos( );  

cos( ); ( ) ;  

cos( );  ,

M m m m L M m m L L

M m L L M m m L

M m L L M m L

θ

θ

θ

= + + = +

= = +

= =

 

  (2.11)

and the elements of the 3-vector Q are given by 
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2 2
1 2 3 1 2 2 12 3 1 3 3 13

1 2 3 1 1

2
2 2 3 1 2 1 12 2 3 1 2 1 2 12

2
3 2 3 3 23 2 3 2 2

2
3 3 1 3 1 1 3 13

( ) sin( ) sin( )
       ( ) sin

( ) sin( ) 2( ) sin( )

       sin( ) ( ) sin

( 2 )sin( )

Q m m LL m LL
m m m gL

Q m m LL m m LL

m L L m m gL

Q m LL m

θ θ θ θ
θ

θ θ θθ θ

θ θ θ

θ θθ θ

=− + −
− + +

= + − +

− − +

= − + 2
3 2 3 2 2 3 23

3 3 3

( 2 )sin( )
       sin .

L L
m gL

θ θ θ θ
θ

−

−

 

  (2.12)

In the above, we have denoted ( ) ( ) ( )ij i jt t tθ θ θ= − , 

and we explicitly show in Eq. (2.10) the 

parameters 1 2,  ,m m and 3m  which we will later on 

consider to be known only imprecisely. 

Using the X-axis as the datum, in the second step 

we describe the energy control requirement

2 3( ) ( ) ( )E t E t E t= +  which is equivalent to relation 

 1( ) 0,E t =  (2.13)

where the energy 1E  of mass 1m is given by 

 2 2
1 1 1 1 1 1 1

1 cos .
2

E m L m gLθ θ= −  (2.14)

Since the system may not initially (at time t = 0) 

satisfy this control requirement we modify the 

control requirement (2.13) using the trajectory 

stabilization relation [7], 

 1 1 0,  E Eα+ =  (2.15)

where ( ) 0tα > is a positive function. By (2.14) and 

(2.15) we obtain the control requirement 

2 2 2
1 1 1 1 1 1 1 1 1

1: 0 0  = sin ( cos ): .
2

Aq L q gL L gL bθ θθ α θ θ⎡ ⎤= − − − =⎣ ⎦  

  (2.16)

For the final step to obtain the equations of 

motion of the controlled nominal system we use 

the information from Eqs. (2.10)-(2.12) and (2.16) 

in Eq. (2.7). Pre-multiplying both sides of the 

equation by 1M − , we obtain the constrained 

acceleration of the (controlled) nominal system as 

(see Eq. (2.9)), 

 1 1( ) ( ).T Tq a M A AM A b Aa− − += + −  (2.17)

2.3 Numerical results and simulations of the 
control problem 

In what follows we shall assume that the real-life 

triple pendulum described above has masses 

whose values are imprecisely known, and that our 

best assessment of their values is: 1 1m = kg, 

2 2m = kg, and 3 3m = kg. Thus, these are the 

values of the three masses of our nominal 

system.  

The lengths of the massless rods are 1 1L = m, 

2 1.5L = m, and 3 2L = m.  At t = 0, the masses are 

located with the angles of 1(0) 1 rad,θ =

2 (0) 0 rad,θ = and 3 (0) 0 radθ =  with respect to the 

vertical Y-axis (see Figure 1). The initial velocities 

of the three bobs are taken to be 

1(0) 0.001 rad/s,θ =  2 (0) 0 rad/s,θ =  3 (0) 0 rad/sθ = . 

We note that these initial conditions do not satisfy 

the constraint, 1 0.E = Thus the parameter α  in 

(2.15) is chosen to be 4

2
0.02 A  where 

2
A  is the 

2L norm of the matrix A in (2.16). The 
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acceleration due to gravity is downwards, and of 

magnitude 29.81 /g m s= . Numerical integration 

throughout this paper is done in the Matlab 

environment, using a variable time step integrator 

with a relative error tolerance of 810−  and an 

absolute error tolerance of 1210− . 

Figure 2  plots the trajectory of mass 3m  of the 

triple pendulum in the XY-plane for a period of 10 

seconds. The start of the trajectory is marked by 

a circle and its end is marked by a square. From 

here on throughout this paper, the start and the 

end of all trajectories are indicated likewise. The 

energies of the three masses are shown in Figure 

3. We see that the total energy (E) is the sum of 

the energies of mass 2m ( 2E ) and mass 3m ( 3E ), 

i.e. 2 3E E E= + . Figure 3(a) also shows the extent 

of error in satisfying this control requirement 

1 0E = . The magnitude of this error is seen to be 

commensurate with the relative error tolerance 

used in the numerical integration. In Figure 4, we 

show the control force cQ (2.8) on the nominal 

system in order to follow the desired control 

requirement 1 0E = . Since only the first element of 

the matrix A in (2.16) is non-zero, the control 

forces on masses 2m  and 3m  are zero since the 

right-hand side of (2.8) is the product of TA with a 

scalar. Figure 4(a) shows the control force 

required to be applied to mass 1m  to satisfy the 

constraint given in (2.15), and Figure 4(b) shows 

its magnitude.   

 

Figure 2: Trajectory of mass m3 (meter)  

 

Figure 3: Energies in Newtons (a) E1, (b) E = 
E2+E3 
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Figure 4: (a) Control force applied to mass m1 of 
the nominal system to satisfy E=E2+E3                      

(b) Magnitude of the control force.  

 

3. Description of the Control Approach 

As mentioned before, there are always 

uncertainties in the description of any real-life 

dynamical systems. These uncertainties arise due 

to our lack of precise knowledge of the system, 

and/or of the ‘given’ forces acting on it. With the 

conceptualization of the nominal system given in 

the previous section, these uncertainties are now 

assumed to be encapsulated in the elements of 

the n by n matrix M and/or the n-vector Q (see 

Eq. (2.1)). 

We assume that the mass matrix of the uncertain 

real-life system, which we do not know exactly, is 

: 0aM M Mδ= + > , where 0M >  is the n by n 

nominal mass matrix—our best estimate of the 

mass matrix of the actual system—, and Mδ is 

the n by n matrix that characterizes our 

uncertainty in the mass matrix of the actual 

system. The subscript ‘a’ denotes the actual, real-

life system whose knowledge is uncertain. 

Similarly, the ‘given’ force n-vector acting on the 

real-life system is taken to be :aQ Q Qδ= + , 

where the n-vector Q  denotes the ‘given’ force 

on the nominal system, and Qδ  denotes the n-

vector of uncertainty in Q .  

Our aim is to control this ‘actual system’ so that it 

mimics the motion of the nominal system and 

thereby satisfies the control requirements (2.4)  

imposed on the nominal system. With no exact 

knowledge of Mδ  and Qδ , the only control force 

that we have at hand to satisfy the control 

requirement (2.4) is the one we have obtained for 

the nominal system—our best estimate of the 

actual system, ( )cQ t . However, this control force 

is predicated on the perfect knowledge of the 

system and the use of an accurate model. Thus 

by applying this control force to the actual 

system, this causes the trajectories of the actual 

system and the nominal system to differ with a 

corresponding error in satisfaction of our desired 

control requirements (2.4). 

To compensate for the uncertainty, the control 

force, ( )cQ t , needs to be modified since it was 
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calculated on the basis of the nominal system 

and is now instead being applied to the actual 

unknown system. We do this by adding another 

control force uQ from a compensating controller, 

resulting in a new state ( , )c cq q  (see Figure 5). 

We define the difference between ( )cq t  and ( )q t

as the tracking error ( )e t (see Figure 5). In this 

paper, we develop this additive controller based 

on a generalization of the notion of a nonlinear 

damping, which is discussed in Section 5. A 

broad introduction to nonlinear damping control 

may be found in Ref. 11. 

 

Figure 5: The block diagram of the controlled 
actual system.  

The equation of motion of the controlled actual 

system thus becomes  

 ( , ) ( , , ) ( )c u
a c c a c cM q t q Q q q t Q t Q= + +  (3.1)

where cq  is the generalized coordinate n-vector 

of the controlled actual system, ( )cQ t  is the 

control force which is obtained from the 

corresponding nominal system and which causes 

the nominal system to satisfy the constraint (2.5), 

and uQ  is the additional control force n-vector 

which we shall develop in closed form. We now 

refer to Eq. (3.1) as the description of the 

‘controlled actual system,’ or ‘controlled system,’ 

for short. Pre-multiplying both sides of (3.1) by 
1

aM − , the acceleration of this controlled system 

can then be expressed as 

 1 1( ) .c
c a a aq a M Q t M M u− −= + +  (3.2)

Here 1:a a aa M Q−=  and :uQ Mu= , where u  is the 

additional generalized acceleration provided by 

the additional control forces uQ  to compensate 

for uncertainties in our knowledge of the actual 

system. 

Before embarking on the determination of ,uQ  we 

consider the uncertainties in the dynamics of the 

mechanical system next.  

4. Uncertainties in the Dynamics of 
Mechanical Systems 

Defining the tracking error as  

 ( ) ( ) ( )ce t q t q t= −  (4.1)

and differentiating (4.1) twice with respect to time, 

we get 

 ,ce q q= −  (4.2)

which upon use of (2.9) and (3.2) yields 
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1 1 1

1 1

( , , ) ( , , ) ( , ) ( , ) ( )

  : [ ( )] : . 

c
a c c a c a

a a

e a q q t a q q t M q t M q t Q t M Mu

q M Mu q I I M M u q u Muδ δ δ

− − −

− −

⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦= − + − +

= + = + − − = + −
 

  (4.3)

In the above equation, we have defined 

( )

( )

11

11 1

( , ) ( , ) ( , ) ( , ) ( , )

    ( , ) ( , ) ( , ) ( , ) ,

a c c c

c c

M I M q t M q t I M q t M q t M q t

I M q t M q t M q t M q t

δ

δ

−−

−− −

= − = − +

= − +
 

  (4.4)

and denoted the acceleration qδ  as 

1 1( , , , , ) ( , , ) ( , , ) ( , ) ( , ) ( ),c
c c a c c a cq q q q q t a q q t a q q t M q t M q t Q tδ − −⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦= − + −  

  (4.5)

where 1:a a aa M Q−= , with : ( , ) ( , ),a c cM M q t M q tδ= +

and : ( , , ) ( , , ).a c c c cQ Q q q t Q q q tδ= +  

5. Generalized Nonlinear Damping Controller 

Our aim in this section is to develop a set of 

compensating controllers that can guarantee the 

tracking of the nominal system’s trajectory despite 

our uncertain knowledge of the actual system. To 

do this we use a generalization of the concept of 

a nonlinear damping [9]. The formulation permits 

the use of a large class of control laws that can 

be adapted to the practical limitations of the 

specific compensating controller being used, and 

the extent to which we want to compensate for 

the uncertainties. 

Noting (4.3), the tracking error signal in 

acceleration can be expressed as 

 1 : .ae q M Mu q u Muδ δ−= + = + −  (5.1)

The aim is to develop a controller u  such that the 

motion of the controlled actual system closely 

tracks the motion of the nominal system. We 

assume for the moment that the compensating 

control acceleration u  is capable of this and 

causes the trajectory of the controlled actual 

system ( , )c cq q  to sufficiently approximate that of 

the nominal system so that ( , ) ( , )c cq q q q≈ . Under 

this assumption, we take the lowest order terms 

in Eq. (4.4) and approximate M  as  

 ( ) 11 ( , ) ( , ) .M I I M q t M q tδ
−−≈ − +  (5.2)

We note that M  is unknown, since Mδ  is 

unknown, and it is embedded in our controller u

(see Eq. (5.1)). We shall show that the uncertain 

term M  will be taken care of by the proof of 

Lyapunov stability. 

We start by defining the system tracking error 

between the nominal and the controlled actual 

systems in the state space form as (see Eq. 

(5.1))  

 ( )1 1

2 2

0 0
,

0 0
e eI

q u Mu
e e I

δ
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= + + −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (5.3)

where 1 2: ,  :e e e e= = , and ( ) 11M I I M Mδ
−−≈ − + . 

Consider the Lyapunov candidate function 

 1 1 2 2
1 1 .
2 2

T TV e e e e= +  (5.4)
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Differentiating Eq. (5.4) once with respect to time 

and using Eq. (5.3), we get 

 1 1 2 2

1 2 2   ( ).

T T

T T

V e e e e

e e e q u Muδ

= +

= + + −
 (5.5)

In order to guarantee the Lyapunov stability of the 

system (5.3), we shall now show that the 

derivative V  is negative. We then start by 

considering the controller, which is of the form 

 ( )1 2 2( ) ( ) ( ),u e t f e ke t= − + −  (5.6)

where 0k >  is arbitrary small positive constants. 

The i-th component, 2( )if e , of the n-vector 2( )f e  

is defined as 

 ( )2 2,( ) / ,  1,  . . .,    i if e g e i nε= =  (5.7)

where 2,ie  is the i-th component of the n-vector 

2e , ε  is defined as any small positive number 

and the function ( )2, /ig e ε  is any arbitrary strictly 

increasing odd continuous function of 2,ie on the 

interval ( , )−∞ +∞  and it goes to ∞  as 2,ie  goes 

to ∞ . 

Result 1: The generalized damping controller  

 ( )1 2 2( ) ( ) ( )u e t f e ke t= − + −  (5.8)

guarantees that the Lyapunov derivative V  is 

negative. Thus the solution of the closed-loop 

system (5.3) is uniformly bounded. 

Proof: Using the controller (5.6) in (5.5), we have 

2 2 2 2 2 2 1 2 2 2 2( ) ( ) .T T T T T TV e q e f e ke e e Me e Mf e ke Meδ= − − + + +  

  (5.9)

Since  

 2 2 2 2( ) ( ) ,Te f e e f e
∞ ∞

≥  (5.10)

using Eq. (5.10) in Eq. (5.9), we obtain 

2
2 2 2 2 2

2 1 2 2 2 2

( )

     ( ) .

T

T T T

V e q e f e k e

e M e e M f e k e M e

δ
∞ ∞ ∞∞

∞ ∞ ∞∞ ∞ ∞∞ ∞ ∞

≤ − −

+ + +
 

  (5.11)

We assume 

 1  1,M Mδ−

∞
<<  (5.12)

thus, 

( ) 11 1  .M I I M M M Mδ δ
−− −

∞ ∞∞
≈ − + ≈  

  (5.13)

And since 1 2 0M e M eδ δ
∞ ∞ ∞ ∞

≈ ≈ , and also 

k  is any small positive number so that the term 

 2 1 2 2 0,T Te M e k e M e
∞ ∞∞ ∞∞ ∞
≈ ≈  (5.14)

thus Eq. (5.11) yields 

( )

2
2 2 2 2 2 22

2
2 2 2 2 2 2

2
2 2 2 2

( ) ( )

  ( ) ( )

  1 ( ) .

T T

T T

V e q e f e k e e M f e

e e f e k e e M f e

e n M f e k e n e

δ
∞ ∞ ∞ ∞∞∞ ∞

∞ ∞ ∞ ∞∞∞ ∞

∞ ∞ ∞ ∞∞

≤ − − +

≤ Γ− − +

≤ − − − + Γ

 

  (5.15)

The second inequality above follows from 

2 22
e e

∞
≥ and we denote qδ ≤ Γ , where Γ  is 

an upper bound on ( )q tδ  (see Eq. (4.5)) and 

the third inequality follows because 2 2
Tn e e

∞ ∞
≥ . 
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We note that the term 2
2 2k e n e

∞ ∞
− + Γ  above 

attains a maximum value 
2 2

4
n

k
Γ at 2 2

ne
k∞

Γ
= . 

Therefore 

 ( )
2 2

2 21 ( ) .
4

nV e n M f e
k∞ ∞∞

Γ
≤ − − +  (5.16)

From Eqs. (5.12) and (5.13), if we further assume 

that 1n M
∞
<<   and since 2( )f e  is a strictly 

increasing function of 2e , which goes to ∞  as 2e  

goes to ∞ , it is always true that V  is negative 

outside some ball. Thus the solution of the 

closed-loop system (Eq. (5.3)) is uniformly 

bounded [9].            � 

Main Result: The closed-from generalized 

damping controller for the uncertain system, 

( )1 2 2

( )

         ( ) ( ) ( ) ( ) ,

c
a c a

c
a

M q Q Q t M u

Q Q t M e t f e ke t⎡ ⎤⎣ ⎦

= + +

= + − + +
 

  (5.17)

where: 

(i) the control force ( )cQ t  is given by (2.8) 

 1( ) ( ) ( )c T TQ t A AM A b Aa− += −  (5.18)

and is obtained on the basis of the nominal 

system;  

(ii)  0k >  is arbitrary small positive constant; and 

(iii) 2( )f e  is any arbitrary strictly increasing odd 

continuous function of 2e  on the interval ( , )−∞ +∞  

and goes to ∞  as 2e  goes to ∞ , 

will cause the actual system to track the trajectory 

of the nominal system.  

6. Numerical Results and Simulations 

In this section we continue to illustrate the control 

methodology in the presence of uncertainties by 

considering the same example of the triple 

pendulum. The approach is straightforward to 

apply to other systems. While our nominal system 

has 1 21,  2,m m= =  and 3 3m = , there is an 

uncertainty of up to 10± % in each of these values 

when describing the actual system. 

With imperfect knowledge of the parameters in 

the system, in order to control the actual system’s 

motion so that it tracks the motion of the 

controlled nominal system, and thereby satisfies 

the control requirements imposed on the nominal 

system, we would have to use Eq. (5.17) that 

contains the additional controller to compensate 

for our uncertainty in the knowledge of the actual 

system. 

We next select the structure and parameters for 

the controller u  given by Eq. (5.8). We choose  

 3
2 2,( ) ( / ) ,i c if e eα ε=  (6.1)  

where , 0cα ε > and ε  is a suitable small number. 

We then obtain in closed-form the additional 

controller needed to compensate for uncertainties 

in the actual system as 
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 ( ) 3( ) ( ) ( ) ( / ) .i i i c iu t e t ke t eα ε= − + −  (6.2)  

Pre-multiplying both sides of Eq. (5.17) by 1
aM −

and using the additional controller Eq. (6.2), we 

obtain the closed-form equation of motion of the 

controlled actual system as 

( )1 1 3( ) ( ) ( ) ( / )c
c a a a i i c iq a M Q t M M e t ke t eα ε− − ⎡ ⎤= + − + +⎣ ⎦  

  (6.3)  

that will cause the actual system to track the 

trajectory of the nominal system, thereby 

compensating for the uncertainty in our 

knowledge of the actual system.  

In order to illustrate the efficacy of our controller 

in compensating for our lack of exact knowledge 

of the actual system in the presence of the 10±  

percent uncertainties in each of the masses 1m , 

2m , and 3m , we pick the set 1 0.1,mδ =

2 0.2,mδ = −  and 3 0.3mδ = , which is assumed to 

represent our actual system. We note that the 

elements of the 3 by 3 symmetric matrix aM and 

of the 3-vector aQ are given in a manner similar 

to Eqs. (2.11) and (2.12) respectively. In this 

case, we have replaced im  in (2.11) and (2.12) 

with ,  1,2,3i i im m m iδ= + = . We note that aA A=

and ab b= , since our constraint (2.16) does not 

involve any of the masses im .To check the 

performance of our controller, we perform a 

simulation using Eq. (6.3) with the parameters 

10,  2,ck α= = and 410ε −= , to specify our 

controller. All the other parameter values are the 

same as those prescribed in Section 2.3. 

 

Figure 6: Trajectory response (meter) of the mass 
m3 of the controlled actual system  

The constrained trajectory of mass 3m  in the XY-

plane of the controlled actual system is illustrated 

in Figure 6. We see that the controlled system 

(given by (6.3) and shown in Figure 6) tracks the 

nominal system (given by (2.17) and shown in 

Figure 2). We note that both systems satisfy the 

energy control requirement (2.15). This illustrates 

the performance of the closed-form Eq. (6.3) 

showing that the controlled actual system tracks 

the trajectories pre-specified by the nominal 

system in the presence of the 10%± uncertainties 

in masses of the triple pendulum and the control 

requirement imposed on it given by Eq. (2.15). 

Figure 7 and Figure 8 correspondingly show the 

displacement errors ( )cq q−  and the velocity 

errors ( )cq q−  between the nominal system (2.17) 

and the controlled actual system (6.3). Both 

tracking errors are small, which are seen to be of 
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O( 510− ) and of O( 410− ) respectively. We note that 

use of the smooth cubic function 2( )if e  given in 

(6.1) eliminates chattering.  

 

Figure 7: Displacement errors 
( ( ) : ( ) ( ),  1,2,3)

ii i ce t t t iθ θ= − =  in radians  

 

Figure 8: Velocity errors 
( ( ) : ( ) ( ),  1, 2,3)

ii i ce t t t iθ θ= − =  in radian/sec  

Pre-multiplying (6.3) by aM , we obtain (see 

(5.17))  

( ) 3( ) ( ) ( / )

         :  : .

c
a c a i i c i

c c u
a a

M q Q Q M e t ke t e

Q Q Mu Q Q Q

α ε⎡ ⎤= + − + +⎣ ⎦
= + + = + +

 

  (6.4)  

The total control force applied to the actual 

system is given by T c uQ Q Q= + . Here cQ  is the 

control force obtained from the nominal system, 

and uQ  is the force applied by the additional 

compensating controller to compensate for our 

inexact knowledge of the actual system. The 

control forces TQ  and uQ on the masses 1m , 2m , 

and 3m  of the actual pendulum are shown in 

Figure 9. The magnitude of the additional control 

forces, uQ , applied by the compensating 

controller is seen to be small relative to the 

magnitude of the total control forces, TQ . 

 

Figure 9: Control forces (Newtons) on the 
controlled actual system. The solid line show the 
total control force, QT, the dashed line shows the 
additional force Qu, needed to compensate for 

uncertainties in the actual system  

7. Conclusion 

In this paper, a set of closed-form controllers for 

uncertain nonlinear multi-body systems is 

developed. The main contributions of this paper 

are the following: 

(i) We obtain the exact closed-form solution 
to the energy control problem of a multi-body 
system. The control force that must be 
applied to the system because of the 
presence of the energy control requirement 
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imposed on the system is easily obtained. 
Also, when starting with initial states that do 
not satisfy this energy requirement, the error 
in satisfying it converges to zero 
exponentially. 
(ii) The general closed-form equation of 
motion for uncertain nonlinear multi-body 
systems—the so-called controlled actual 
system—has been developed. The novelty in 
the approach developed here is that we first 
use the fundamental equation to obtain exact 
control of the nominal, nonlinear, non-
autonomous, mechanical system. This 
control, cQ , ensures that the trajectory 
constraints are exactly satisfied by the 
nominal system and that it optimizes the 
control cost given by 1Tc cQ M Q−  at each 
instant of time. More general control costs 
can also be considered as in  Ref. [7]. 
Control of the actual system, in which both 
the mass matrix and the ‘given’ forces may 
be only imprecisely know, is then carried out 
using the concept of generalized nonlinear 
damping.  
(iii) We have generalized the concept of a 
nonlinear damping by including functions 

2( )if e  that are not necessarily signum or 
saturation functions [9]. The control functions

2( )if e  and the parameters that define the 
compensating controller can therefore be 
chosen depending on practical considerations 
of the control environment and on the extent 
to which the compensation of the 
uncertainties is desired. Thus when dealing 
with large, complex multi-body systems 

greater flexibility is afforded.  For example, 
the use of a cubic function may obviate the 
need for a high-gain controller and would also 
allow continuous control, thereby preventing 
chattering.  
(iv) The formulation of the proposed control 
methodology encompasses both general 
sources of uncertainties—uncertainties in the 
description of the physical system and 
uncertainties in knowledge of the ‘given’ 
forces applied to the system. The set of 
closed-form controllers developed herein is 
therefore general enough to be applicable to 
complex dynamical systems in which 
uncertainties of both these types may arise. 
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