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Abstract 
 This paper presents an integrated design technique to carry out simultaneous topology, shape 
and sizing optimization of a three-dimensional truss structure. An optimization problem is set to find 
structural layout, shape, and truss bars’ cross-sections such that multiple objective functions including 
mass, compliance, natural frequencies, frequency response function (FRF), and force transmissibility (FT) 
are optimised. The Pareto optimal solutions of design testing problems are explored by using two 
multiobjective evolutionary algorithms (MOEAs) namely strength Pareto evolutionary algorithm (SPEA) 
and population-based incremental learning (PBIL). The results obtained from using the two optimizers are 
illustrated and compared. Based upon the hypervolume performance indicator, it is shown that PBIL is 
superior to SPEA when optimizing compliance and natural frequency, while the latter is superior when 
dealing with FRF and FT.  
Keywords: Topology optimization; truss structure; multiobjective evolutionary algorithms; population-
based incremental learning; vibration reduction  
 

1. Introduction 
In structural optimisation, design variables 

can be categorised into three groups as topology, 
shape and sizing variables. Topological design 
variables determine initial structural layout 
whereas shape and sizing parameters give the 
shape and dimensions of structures. Traditionally, 
a designer performs topological optimization at 
the first design phase to obtain initial structural 
configuration. The optimum shape and sizes of 
the structure are then evaluated in the later 

design stage. This is often called multi-stage 
optimisation. Nevertheless, it has been found that 
the better design process is to perform topology, 
shape, and sizing optimisation simultaneously. 
This is easier said than done. The combination of 
shape and sizing design may be easily carried 
out but, when combining topological variables to 
the design task, it is more difficult and 
complicated. However, such an integrated design 
approach can be attained and applied to both 
continuum and skeletal structures. 
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The applications of such integrated 

design concept for skeletal structures (trusses 
and frames) have been studied for many years 
where both gradient-based and population-based 
optimizers were used [1-5]. Design problems 
were mostly limited to single objective. Objective 
functions usually include structural weight, static 
and dynamic stiffness. Recent investigation [6] 
shows that the use of multiobjective evolutionary 
algorithms for this type of design problem is 
possible and effective. The work in [6] shows that 
multiobjective design of simple frames with 
combined topology, shape, and sizing design 
variables is achievable. The two best optimizers 
are real-code strength Pareto evolutionary 
algorithm and binary-code population-based 
incremental learning. However, the performance 
of these two methods in dealing with large-scale 
practical design has not been studied yet.  

This work presents an approach to 
achieve simultaneous topology, shape and sizing 
optimization of a three-dimensional truss structure. 
An optimization problem is set to find structural 
layout, shape, and truss elements’ cross-sectional 
areas within one simulation run such that 
optimizing multiple objective functions including 
mass, compliance, natural frequencies, frequency 
response function, and force transmissibility. The 
Pareto optimal solutions are explored by using 
SPEA and PBIL. The results obtained from using 
the two optimizers are illustrated and compared.  

 
2. Finite element modelling [6] 

Trusses and frames are some of the 
most commonly used structures in daily life. 
Using such a structure is said to be 

advantageous since they are simple and 
inexpensive to construct. It can be employed in 
many engineering purposes e.g. transmission 
towers, wind turbine towers, communication 
towers, civil engineering structures, and 
mechanical parts. 
 A linear structural dynamic model can be 
thought of as a structure being in a dynamic 
equilibrium state. It is the state at which the 
system has minimum potential energy (this 
includes structural elastic restoration, the work 
done by external forces, and the work due to 
inertial forces). By using a finite element 
approach, the structural dynamic model is 
represented by 

 )(tFKδδM =+��  (1) 

where δ is the vector of structural displacements, 
M is a structural mass matrix, K is a structural 
stiffness matrix, and F is the vector of dynamic 
forces acting on the structure. 
 With the given prescribed displacements 

(say δb = 0), Equation (1) can be partitioned as 
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where the subscript b indicates the known 
displacements and unknown reactions at the 
boundary conditions, and the subscript a denotes 
unknown displacements and predefined external 
forces.  

Equation (2) can be rearranged leading to 
2 systems of differential equations as: 

aaaaaaa FδKδM =+��  (3) 
and 

 babaaba FδKδM =+�� . (4) 
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In the cases of free vibration analysis, 

Equation (3) can be written as 

 0δKδM =+ aaaaaa
��

 (5) 

By substituting ti
aa e ωδδ = to (5), we have 

an eigenvalue problem 
0δMK =− aaaaa )( 2ω  (6) 

Solving such a system of equations leads 
to N natural frequencies { }Nωωω ,,, 21 …=ω and 
their corresponding eigenvectors 

[ ]NφφφΦ ,,, 21 …= , where N is the size of the 
square mass and stiffness matrices. The 
orthogonality conditions can be expressed as 

)( iaa
T diag μ=ΦMΦ  (7) 

 )( 2
iiaa

T diag ωμ=ΦKΦ  
By using the proportional damping 

concept (also known as Rayleigh damping), a 
damping matrix can be introduced to the model 
leading to 
 aaaaaaaaaa FδKδCδM =++ ���  (8) 

where Caa = αMaa + βKaa, and α and β are 
damping coefficients to be defined. 

From equation (8), by substituting 
ti

aa e ωδδ = and ti
aa e ωFF = , a frequency response 

function (FRF) matrix can be approximated as [7] 
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Figure 1 illustrates how to measure H(r,s) 
which represents the ratio of a displacement 
response at the rth degree of freedom to a 
harmonic excitation at the sth degree of freedom. 
 Furthermore, by defining force 

transmissibility, denoted by T(ω), as the ratio of 

output harmonic reaction forces to the input 
external harmonic forces, it can be written as 

 ( )HKMT baba +−= 2)( ωω  (10) 

 
Fig. 1. Measurement of FRF 
 

In reducing structural vibration, FRF and 
FT determine structural merit. The lower FRF or 
FT at a particular frequency results in the better 
structural vibration suppression design. Therefore, 
a design objective can be assigned in such a way 
that frequency responses at a frequency range of 
interest are minimised. Moreover, maximising 
structural natural frequency is an alternative 
criterion for design of structures under dynamic 
loadings.  

 
3. Testing Problems 

A three-dimensional truss tower is used for 
this study. Four testing problems are posed to 
find the optimum tower shape, bar sizes, and 
topology such that minimising two objective 
functions while satisfying design constraints. The 
integrated topology, shape, and sizing 
optimisation problem can be expressed as 

min [f1, f2]           (11) 
subject to 

 σmax ≤ σall 

 λi ≤ 1 

sth d.o.f. excitation 

rth d.o.f. response 
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x ∈ Ω 
where f1, f2 are objective functions 

σmax is the maximum stress on truss elements. 

σall is an allowable stress to be defined 

λi is a buckling factor of each element (defined 
as the ratio of applied load to critical load) 
x is a vector of design variables 

and Ω is a design domain of x. 
The tower is subject to four static load cases 

acting at the top with structural weight also being 
added to the force vectors. The tower is 50-m 
high with square cross-sectional area. Fig. 2 
displays 4 parameters that control the shape of 
the tower. Having 4 input parameters, the tower 
can be shaped by using an interpolation 
technique. The tower is allowed to have 10-20 
tower sections. A tower topology can be obtained 
by using an adaptive ground element approach. 
Figure 3 shows the ground finite elements of a 
particular tower section. On each section, there 
are 8 nodal points, and 16 ground elements. 6 
design parameters are assigned as the cross-
sectional areas of those elements to maintain 
structural symmetry as given in Table 1. With the 
ground finite element approach, elements having 
too small cross-sectional areas are deleted from 
the structure. This is a means to define truss 
topology and, at the same time, to define the 
elements’ cross-sectional areas.  

Design variables can be encoded as binary 
or real parameters. In the decoding process, 
there are three groups of design variable i.e. the 
first group determines the number of tower 
sections, the second group gives the four 
variables to control tower shape as displayed in 

Figure 2, and the last group represents ground 
elements’ cross-sectional areas. In the last design 
variable group, on each tower section, 6 design 
variables are assigned as the cross-sectional 
areas of 16 ground elements. In cases that, the 
area after performing optimisation is too small, 
the corresponding ground elements will be 
deleted from the section to form a structural 
layout. The flowchart for function evaluation is 
displayed in Figure 4. 

 
Fig. 2 parameters for defining a tower shape 

 
Fig. 3 Ground elements for each tower section 
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Table 1 Element connectivity and cross-sectional 
variables.  
Elements as node 
number connections 

Cross-sectional areas 

1-2 
3-4 
2-3 
4-1 

x1 
 
 

1-5 
2-6 
3-7 
4-8 

x2 

1-6 
3-8 

x3 

2-5 
4-7 

x4 

1-8 
3-6 

x5 

4-5 
2-7 

x6 

 
The four bi-objective design problems have 

the same constraints as shown in Equation (11). 
The objective functions of each design problems 
are given as follows: 

‐ OPT1: f1 = structural mass, f2 = structural 

compliance 

‐ OPT2: f1 = structural mass, f2 = natural 

frequencies 

‐ OPT3: f1 = structural mass, f2 = mean 

values of FRF crest parameters 

‐ OPT4: f1 = structural mass, f2 = mean 

values of FT crest parameters 

 More details of the objective functions are 
given in [6].  
 The two optimisers, SPEA (its second 
version) using real code [8-9] and PBIL [10-11], 
are implemented to solve the optimisation 
problems three runs for each problem with the 
population size of 200, and number of generation 
as 300. The external Pareto archive size is set to 
be 200. The performance assessment is carried 
out by using the well-known hypervolume 
indicator [12]. 

 
Fig. 4 Flowchart for design variables 

decoding  
 

4. Results 
Having used the multiobjective 

evolutionary algorithms to tackle the design 
problems three optimisation runs for each 
problem, the hypervolumes of the Pareto fronts 
obtained are evaluated and shown in Table 2. 
Note that the higher hypervolume the better 
Pareto front. From the comparative results, it can 
be seen that the best method for the first design  
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problem OPT1 is PBIL since the average value of 
front hypervolumes produced by PBIL is higher. 
The best run for this design problem comes from 
the third run of PBIL (the bold value). For OPT2, 
the best optimiser is still PBIL whereas the best 
run is from the first run of PBIL. SPEA is overall 
superior to PBIL for OPT3; however, the best run 
is from the second run of PBIL. Similarly to OPT3, 
SPEA outperforms PBIL in cases of OPT4 while 
the best run is the third run of SPEA. 
 
Table 2 Hypervolume values 

No. of runs 1 2 3 Avg 
SPEA 0.77 0.44 0.31 0.50 

OPT1 
PBIL 0.72 0.66 0.79 0.72 

SPEA 0.55 0.70 0.68 0.65 
OPT2 

PBIL 0.80 0.78 0.66 0.75 

SPEA 0.67 0.77 0.85 0.76 
OPT3 

PBIL 0.42 0.92 0.75 0.70 

SPEA 0.94 0.90 0.99 0.94 
OPT4 

PBIL 0.25 0.59 0.65 0.50 
 
The best front (from the best run) of 

OPT1 is displayed in Fig. 5 where some selected 
design solutions are highlighted. The truss towers 
corresponding to the selected design solutions in 
Fig. 5 are shown in Fig. 6. For OPT2, the best 
front is shown in Fig. 7 while the corresponding 
structures are illustrated in Fig. 8. The best front 
of OPT3 is shown in Fig. 9 while the 
corresponding structures are illustrated in Fig. 10. 
For the fourth testing problem OPT4, the best 
front is depicted in Fig. 11 whereas the 
associated structures are illustrated in Fig. 12. 
The structures in Fig. 6, 8, 10 and 12 are said to 

have similar shapes and topologies with various 
elements’ cross-sections. 

 
Fig. 5 Best front of OPT1 

 
Fig. 6 Structures from the front in Fig. 5 

 
Fig. 7 Best front of OPT2 
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Fig. 8 Structures from the front in Fig. 7 

 

 
Fig. 9 Best front of OPT3 

 
Fig. 10 Structures from the front in Fig. 9 

 
Fig. 11 Best front of OPT4 
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Fig. 12 Structures from the front in Fig. 11 

 
5. Conclusions 

From the comparative results, it can be 
concluded that PBIL is superior when optimising 
structural compliance (static stiffness) and natural 
frequencies (dynamic stiffness) while the SPEA 
method is better when optimising FRF and FT. 
The obtained truss structure are said to be 
practical with further detailed design phase. The 
proposed approach can be a powerful tool for 
truss and frame design. By using this design 
strategy, various optimum structures for decision 
making can be obtained within one simulation run. 
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