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Abstract 
This paper aims to investigate natural convection conjugating with surface radiation in a square 

enclosure. Convective and diffusive parameters of the transportation equations are calculated using 
discretized numerical method in the three schemes: central, upwind, and hybrid differencing schemes. In 
this work, the running time and the iteration number of computing in the various schemes are compared. 
As the vertical walls of the enclosure are differentially heated while the others are adiabatic, the analyses 
are performed in two dimensions and steady-state conditions. Air contained in the enclosure is treated as 
a compressible Newtonian fluid. An in-house code is developed for these cases providing numerical 
solutions which are compared with the results from the benchmark and the published correlation in order 
to validate the code. The relationship between the running time including the iteration numbers and 
Rayleigh numbers in the square enclosure with the various schemes and the surface emissivity are 
demonstrated. The results illustrate that the upwind differencing scheme can converge into the solutions 
slightly faster than the others for the surface emissivity of 0 and 1 but there is no significant in the varying 
schemes for the surface emissivity of 0.5. 

 
Keywords: finite volume method, central differencing scheme, upwind differencing scheme, hybrid 

differencing scheme, natural convection, surface radiation. 
 

1. Introduction 
Natural convection and surface radiation is 

the important heat transfer modes occurring in 
many engineering applications such as heat 
transfer in nuclear reactors, heat transfer in 
cavities of electronic equipment or heat transfer in 
rooms of buildings etc. There are a lot of 
researchers have devoted their time and budgets 
to investigate about the natural convection and 

surface radiation phenomena. Most of them have 
performed simulation in a square enclosure and a 
preferable method employed to discretize the 
transport equations is the finite volume method. 
The basic schemes of the finite volume method 
which are used to discretize the convective and 
diffusive terms of the transport equations are the 
central, upwind and hybrid differencing schemes. 
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 De Vahl Davis [1] and Saitoh and co-
worker [2] provided the benchmark numerical 
solutions for natural convection of air in a square 
cavity with differentially heated walls and the 
others were adiabatic. They adopted the finite 
difference method to discretize the partial 
differential equations of the airflow. Balaji and 
Venkateshan [3] presented the correlations for 
free convection and surface radiation in a square 
cavity. The finite volume method was employed to 
solve for convection. Akiyama and Chong [4] 
reported the solutions of the numerical analysis of 
natural convection with surface radiation in a 
square enclosure. They performed the simulation 
of the buoyant flow of air in the enclosure by 
using the finite difference method. Nilesh Agrawal 
et al. [5] carried out the numerical investigation to 
obtain a correlation for heat transfer during 
laminar natural convection in an enclosure 
containing the uniform mixture of air and 
hydrogen. The finite volume method was used 
and the first order upwind differencing scheme for 
convective terms and the second order central 
differencing scheme for diffusive term were 
employed to discretize the governing equations of 
the flow. The numerical simulation of free 
convection of a nanofluid in a square cavity with 
an inside heater was performed by Mostafa 
Mahmoodi [6]. He used the finite volume method 
and the second order central differencing scheme 
for the diffusive term and the hybrid differencing 
scheme for convective term. Xaman and 
colleagues [7] investigated natural convection 
combined with surface thermal radiation in a 
square cavity with a glass wall. The governing 
equations of the flow were solved by using the 
finite volume method. The convective and 

diffusive terms of the transport equations were 
discretized by using the hybrid differencing 
scheme and the second order central differencing 
scheme, respectively. 

From the review of the former literature, the 
various schemes were used to discretize the 
convective and diffusive terms of the transport 
equations but there are not the evaluation of the 
convergent performance of the basic schemes.  
Therefore, the objectives of this work are aimed 
to investigate the performance of the developed 
code under the basic schemes of the finite 
volume method on the application of natural 
convection conjugating with surface radiation in a 
square enclosure. In addition, the investigation is 
carried out with air contained in the square 
enclosure and treated as a compressible 
Newtonian fluid. 

 
2. Problem Statement and Mathematical 

Model 
The geometry of the problem under 

consideration is shown in Fig. 1. The square 
enclosure has the width and height of b, the 
characteristic length. The vertical hot and cold 
temperature sides are designated by TH and TC, 
respectively. The other sides are the adiabatic 
walls. The square enclosure is contained with air 
a nonparticipating media and the enclosure wall 
surfaces are assumed to be the diffuse gray 
surfaces. 
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Fig. 1 Geometry of the problem. 

 

2.1 Natural convection 
Because of the temperature difference between 

the vertical hot and cold walls of the square 
enclosure, air circulation and natural convection 
occurs within the square enclosure. The 
governing equations of the airflow in the square 
enclosure are defined by the continuity, 
momentum and energy equations. The equations 
at the steady-state condition for a compressible 
Newtonian fluid are expressed as the following 
[8]: 

 The continuity equation 

  0  V    (1) 

 The momentum equation in the horizontal 
direction 
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 The momentum equation in the vertical 
direction
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 The energy equation 

      TkVPVi      (4) 
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The appropriate boundary conditions for the 
airflow in the square enclosure are: 

 at x = 0, 0 < y < b 

u = v = 0 , T =TH , 0




x
P

 

 at x = b, 0 < y < b 

u = v = 0 , T =TC , 0




x
P

 

 at 0  x  b , y = 0 

u = v = 0 , T =TB , g
y
P





 

 at 0  x  b , y = b 
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u = v = 0 , T = TT , g
y
P


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All properties of air in the square enclosure are 
the functions of the temperature and pressure. 
The air properties are obtained from National 
Institute of Standards and Technology (NIST) 
Standard Reference Database 23, Version 9.0 by 
the two variables polynomial regression. The air 
properties are obtained from 
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where  are the air property variables of density, 
thermal conductivity, viscosity and specific 
internal energy, amn are coefficients of the 
variables, and T and P are the absolute 
temperature and pressure of air in the square 
enclosure, respectively. The coefficients of 
determination (R2) of the air properties received 
from the two variables polynomial regression are 
greater than 0.99. For all air properties, m and n 
equal 6. 

2.2. Surface radiation 
The Hottel’s crossed string method is 

employed to determine the view factors of the 
wall surfaces of the square enclosure which the 
wall surfaces are assumed to be infinitely long in 
the z direction. Firstly, the radiosity values on the 
wall surfaces of the square enclosure have to be 
determined by 

  j

N

j
ijiiii JFTJ 

1

4 1    (6) 

The radiative heat flux on the wall surfaces of 
the square enclosure is given by 

  

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j
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1
  (7) 

Since the bottom and top wall surfaces of the 
square enclosure are adiabatic, the temperature 
distribution on the bottom and top wall surfaces of 
the square enclosure can be determined by the 
heat balance between natural convection and 
surface radiation. The heat balance on the bottom 
and top wall surfaces of the square enclosure are 
the following: 

 at the bottom wall surface 

 radiA q
y
T

k 



  (8a) 

 at the top wall surface 

 radiA q
y
T
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


   (8b) 

2.3 Heat transfer 
The total average Nusselt number of the 

square enclosure is calculated by 

radconvtotal NuNuNu    (9) 

The total average convective Nusselt number 
of the square enclosure is given by 
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 (10) 

The convective heat flux is calculated by 

x
T

kq Aconv



   (11) 

The reference heat flux is expressed as 

 
b

TT
kq CH

Aref


   (12) 

The total average radiative Nusselt number of 
the square enclosure is written as 
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3. Numerical Method 

The continuity, momentum and energy 
equations for the simulations of the airflow in the 
square enclosure are numerically solved 
according to their boundary conditions. The finite 
volume method is employed to discretize the 
equations of the airflow and the staggered grid is 
used. The Pressure Implicit with Splitting of 
Operators (PISO) algorithm is adopted to solve 
the velocity-pressure coupling problem of the 
airflow. The Tri-Diagonal Matrix Algorithm (TDMA) 
is used to solve the matrix systems of the 
variables. 

Eqs. (2) and (3) can be written in a form called 
the transport equation: 

      SV           (14) 

where  are the variables of the velocity 
components in the horizontal and vertical directions. 
The equation obtaining from integration and 
discretization of the transport equation by the finite 
volume method can be expressed as 

Baaaaa SSNNWWEEPP    (15) 

where  dydxSB    
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Fig. 2 Staggered grid. 

 

3.1 Central differencing scheme 
The coefficients of the neighbor variables of 

the discrete transport equation for the central 
differencing scheme are calculated by 

E

Ee
EE dx

FFdx
DDa    (16) 

W

Ww
WW dx

FFdx
DDa    (17) 

N

Nn
NN dy

FFdy
DDa    (18) 

S

Ss
SS dy

FFdy
DDa    (19) 

3.2 Upwind differencing scheme 
The coefficients of the neighbor variables of 

the discrete transport equation for the upwind 
differencing scheme are calculated by 

 0,MAX EEE FFDDa    (20) 

 0,MAX WWW FFDDa    (21) 

 0,MAX NNN FFDDa    (22) 
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 0,MAX SSS FFDDa    (23) 

3.3 Hybrid differencing scheme 
The coefficients of the neighbor variables of 

the discrete transport equation for the hybrid 
differencing scheme are calculated by 
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The coefficient of the property variable of the 
discrete transport equation for the all scheme is 
calculated by 
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For surface radiation, the radiosity values of 
the square enclosure wall surfaces are 
determined by the Gauss Seidel iteration method 
and the temperature distribution on the adiabatic 
wall surfaces of the square enclosure is 

calculated by using heat balance between natural 
convection and surface radiation on the adiabatic 
wall surfaces of the square enclosure. 

In the numerical procedures, the iteration 
processes have to be used to obtain the 
convergent solutions. Therefore, a convergent 
criterion is established to monitor the maximum 
relative difference of the velocities, temperatures 
and pressures in the two successive iterations. 
The maximum relative difference must be less 
than or equal to 10-4, MAX  ( iter -  iter-1) /  iter 
  10-4, with  = u, v, T, P. A summary of the 
numerical procedures is: 

1. The view factors of the wall surfaces 
of the square enclosure are calculated 
by the Hottel’s crossed string method. 

2. The initial guessed values for all of the 
variables are imposed. 

3. The continuity and momentum 
equations of the airflow in the 
enclosure are solved under the PISO 
algorithm to obtain the velocity vectors 
and the pressure field by Eqs. (1) – 
(3). 

4. The energy equations of the airflow in 
the square enclosure are solved to 
obtain the temperature distribution in 
the flow field by Eq. (4). 

5. The radiosity and the surface radiation 
heat flux values of the wall surfaces of 
the square enclosure are determined 
by Eqs. (6) and (7), respectively. Then 
the temperature distribution on the 
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adiabatic wall surfaces of the square 
enclosure is calculated by Eq. (8). 

6. The convergent criterion is applied for 
all of the variables. If all of the 
variables do not meet the convergent 
criterion, The procedures must be 
returned to step 3, until the convergent 
criterion is achieved. 

 
4. Code Validation 

An in-house code is developed for this 
purpose. To insure that the solutions receiving 
from the developed code are correct, the validity 
of the code is demonstrated by comparing the 
solutions receiving from the code with the 
benchmark numerical solutions of De Vahl Davis 
[1], and Saitoh [2], the solutions from the 
published numerical correlations of Balaji [3] and 
the published numerical solution of Akiyama [4] in 
case there is only natural convection, and natural 
convection is conjugated with surface radiation. 

Firstly, the grid independence test is 
conducted to insure that there is not the deviation 
of the solutions because of the grid sizes. The 
test is implemented in case natural convection is 
conjugated with surface radiation at Ra = 104, b = 
21.35 mm, T0 = 293.5 K and 0 = 29.35 with the 
non-uniform grids. Because of the steep 
temperature gradient near the enclosure walls, 
the fine grids near the enclosure walls and the 
coarse grids in the core of the enclosure are 
performed with that the ratio of the width of the 
sequential grids is 1.2. The total average Nusselt 
number throughout the enclosure, totalNu , is 

adopted to be a criterion test value. The criterion 
test values of the grid sizes 1616, 2020, 
2424, 2828, 3232 and 3636 are calculated 
for the all schemes. The change of the criterion 
test values is less than 0.1% when the grid sizes 
are greater than or equal to 2828 for the all 
schemes. Therefore, the grid size 2828 is 
employed throughout this work. 

4.1 Pure natural convection 
The emissivity values of the wall surfaces of 

the square enclosure equal zero for the code 
validation with pure natural convection. 

4.2 Natural convection with surface 
radiation 

In this case, the code validation is carried out 
with that the emissivity values of the wall surfaces 
of the square enclosure are 0.5 and 1.0, and the 
conditions according to the solutions from the 
published numerical correlations and the 
published numerical solutions. 

From the comparisons between the solutions 
of the in-house code with the benchmark 
numerical solutions, the solutions from the 
published numerical correlations and the 
published numerical solutions, most of the 
difference values are small, which they give the 
credence to the in-house code, while there are 
some difference values are great because of the 
existence of the errors of the correlations and the 
difference of the fluid properties used for the 
simulation. 
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Table 1 Comparison between the solutions of the in-house code with the benchmark numerical solutions 
and the solutions from the published numerical correlations. 

Ra 

The solutions 
from the 

references 

convNu  

Present study 

convNu   Difference (%) 

Central Upwind Hybrid  Central Upwind Hybrid 

103 1.118 [1] 1.117 1.110 1.117  0.089 0.716 0.089 
103 1.192 [3] 1.116 1.110 1.116  6.376 6.879 6.376 
104 2.243 [1] 2.246 2.203 2.246  0.134 1.783 0.134 
104 2.2415 [2] 2.246 2.203 2.246  0.201 1.718 0.201 
104 2.408 [3] 2.246 2.203 2.246  6.728 8.513 6.728 

 

Table 2 Comparison between the solutions of the in-house code with the solutions from the published 
numerical correlations and the published numerical solutions. 

Ra  

The 
solutions 
from the 

references 

totalNu  

Present study 

totalNu   Difference (%) 

Central Upwind Hybrid 
 

Central Upwind Hybrid 

103 0.5 1.579 [3] 1.642 1.637 1.642  3.990 3.673 3.990 
103 0.1 2.125 [3] 2.271 2.266 2.271  6.871 6.635 6.871 
104 0.5 3.264 [3] 3.225 3.179 3.225  1.195 2.604 1.195 
104 0.5 4.078 [4] 3.617 3.569 3.616  11.305 12.482 11.329 
104 1.0 4.470 [3] 4.510 4.461 4.510  0.895 0.201 0.895 
104 1.0 5.260 [4] 5.410 5.360 5.409  02.852 01.901 02.833 

 
Note for Table 1 and 2 

1. The conditions of the solutions from the published numerical correlations [3] at Ra = 103 are b = 7 mm, T0 = 298.15 K and 0 = 
9.94. 

2. The conditions of the solutions from the published numerical correlations [3] at Ra = 104 are b = 15 mm, T0 = 298.15 K and 0 = 
9.94. 

3. The conditions of the published numerical solutions [4] are b = 21.35 mm, T0 = 293.5 K and 0 = 29.35. 

 

5. Results and Discussion 
Since the investigation is performed with a 

constant width of the enclosure, so that the 
temperature ratio has to vary with the Rayleigh 
number. The dimensions of the square enclosure 

are imposed to be 21.3521.35 mm. The 
variation of the temperature ratio with the 
Rayleigh number for present study at T0 = 293.5 
K is shown in Fig. 3. 
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Fig. 4 and 5 show the variation of the running 
time and the iteration numbers of the code with 
the Rayleigh number. From Fig. 4 and 5 at (a) 
and (c), the upwind differencing scheme took the 
least of time and the iteration numbers for running 
of the code. For the emissivity values of the 
enclosure surfaces equal 0.5, the upwind 
differencing scheme took the most of time for 
running of the code and the upwind differencing 
scheme took also the most of the iteration 
numbers for running of the code with the low 
values of the Rayleigh number while the central 
differencing scheme took the most of the iteration 
numbers for running of the code with the high 
values of the Rayleigh. 

Fig. 6 and 7 show the velocity vectors and 
the dimensionless temperature contours in the 
square enclosure at Ra = 104, T0 = 293.5 K, 0 = 
29.35 and  = 1.0 with the various schemes. 
 

 

 
Fig. 3 Variation of the temperature ratio with the 

Rayleigh number for present study (T0 = 293.5 K). 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 4 Variation of the running time of the code 
with the Rayleigh number (a)  = 0.0, (b)  = 0.5, 
(c)  = 1.0. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 5 Variation of the iteration numbers of the 
code with the Rayleigh number (a)  = 0.0, (b)  
= 0.5, (c)  = 1.0. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 6 Velocity vectors in the square enclosure 
(Ra = 104, T0 = 293.5 K, 0 = 29.35 and  = 1.0) 
(a) Central differencing scheme, (b) Upwind 
differencing scheme, (c) Hybrid differencing 
scheme. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 7 Dimensionless temperature contours in the 
square enclosure (Ra = 104, T0 = 293.5 K, 0 = 
29.35 and  = 1.0) (a) Central differencing 
scheme, (b) Upwind differencing scheme, (c) 
Hybrid differencing scheme. 
 

6. Conclusion 
For the emissivity values of the enclosure 

surfaces equal 0.0 and 1.0 the upwind 
differencing scheme can converge into the 
solutions more quickly than the other schemes. 
 

7. Nomenclature 
b width of the enclosure 
F view factor 
g gravitational acceleration, (= 9.81 m/s2) 
J radiosity, W/m2 

k thermal conductivity, W/(mK) 
Nu Nusselt number 
P pressure, Pa 
q   heat flux, W/m2 

Ra Rayleigh number 
T temperature, K 

T0 reference temperature, K 




 


2
CH TT

 

T * dimensionless temperature 













CH

C

TT
TT

 

u velocity component in the horizontal  
direction, m/s 

v velocity component in the vertical 
direction, m/s 

V total velocity, m/s 
x Cartesian coordinate in the horizontal 

direction of the enclosure, m 
X * dimensionless coordinate in the horizontal 

direction of the enclosure 






b

x
 

y Cartesian coordinate in the vertical 
direction of the enclosure, m 

Y * dimensionless coordinate in the vertical 
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direction of the enclosure 






b
y

 

  
Greek symbols 
 emissivity 

0 Temperature ratio 










CH TT

T0  

 viscosity, kg/sm 
 density, kg/m3 

 Stefan-Boltzmann constant,  
(= 5.6705110-8 W/( m2K4)) 

  
Mathematical symbol 
 del operator 
  
Superscript 
iter iteration number 
  
Subscripts 
ave average 
A air 
B bottom surface of the enclosure wall 
conv convection 
C cold wall 
e eastern surface of cells 
E eastern direction 
H hot wall 
i considered surface element 
j the other surface element 
n northern surface of cells 
N northern direction 
rad radiation 
ref reference 
s southern surface of cells 
S southern direction 
T top surface of the enclosure wall 

w western surface of cells 
W western direction 
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