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Abstract 
In order to avoid mechanical resonance, a vibrating structure needs to be designed such that its 

working frequency interval is sufficiently far from its natural frequency. Natural frequency of a mechanical 
system is obtained from free vibration analysis commonly done by finite element method (FEM). In this 
work, we demonstrate the development of 3D FEM computer software for free vibration analysis without 
damping which is an eigenvalue problem. The governing FEM equations had been derived in the 
standard form of eigenvalue problem before matrix tridiagonalization was performed. Three 
tridiagonalization methods including the Lanczos method, the Householder method and the block Lanczos 
method were chosen for comparison purposes. The QL algorithm with implicit shifts was implemented to 
solve the derived FEM equations. The computational performances of the developed FEM programs have 
been evaluated by several free vibration problems. The simulation results show that the Householder and 
the block Lanczos methods are more suitable for free vibration analysis than the Lanczos method.   
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1. Introduction 
One of the most common problems for a 

mechanical system is mechanical resonance. 
When the resonance occurs, the structure 
oscillates with higher amplitude than it does at 
other frequencies. A vibrating system is prone to 
mechanical resonance when the frequency of its 
oscillations matches the system's natural 
frequency. Mechanical resonance can cause 
unwanted violent motions and even structural 
failure in structures including buildings, bridges, 

machines and vehicles. Therefore, design 
engineers must ensure that the working frequency 
interval of the mechanical system is sufficiently 
far from its natural frequency. 

Natural frequency can be determined from 
free vibration analysis [1,2]. For 3D complex 
geometry, this is commonly done by finite 
element method (FEM). In this paper, the 
development of 3D FEM computer software for 
free vibration analysis without damping, which is 
an eigenvalue problem [3], is demonstrated. A 
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comparison between three tridiagonalization 
methods [4], which are Lanczos [5], Householder 
[4,6] and block Lanczos [7,8], was made to find 
suitable tridiagonalization methods for free 
vibration analysis. The QL algorithm with implicit 
shifts [6,9] was employed to solve the derived 
FEM equations. The performances of the 
developed FEM computer programs have been 
evaluated by several problems having exact 
solutions and/or experimental results. Further-
more, computational results by ANSYSTM [10], a 
widely–used commercial FEM software package, 
have also been shown for comparison purposes. 
 

2. Finite Element Derivation 
2.1 Finite Element Equations 
The governing equation for 3D free vibration 

analysis without damping is:  

  
2 2 2

2 2 2
0

d u d v d w
m k u v w

dt dt dt

 
       

 
 (1) 

where m  is mass, k  is stiffness coefficient, t  is 
time, and u, v and w are displacement in x, y and 
z directions, respectively. By FEM derivation, the 
partial differential equation (Eq. (1)) is transformed 
into algebraic equation [11]: 
       0M K    (2) 
where  M  is mass matrix, 
  K  is stiffness matrix and 
    is displacement matrix. 
 The oscillation is assumed to be simple 
harmonic motion [12] which can be described by: 
    sin t     (3) 
where    is amplitude of motion and 
   is angular frequency. 
Angular frequency is related to frequency f  by: 
 2 f   (4) 

The second derivative of Eq. (3) is: 
    2 sin t      (5) 
By substituting Eqs. (3) and (5) into Eq. (2), we 
obtain: 
      2 0K M   

 
 (6) 

where 
      

T

V

M N N dV    (7) 

here,   is density, and 
            

T T

V

K B C B dV B C B V   (8) 

where,  C  is stress-strain relation matrix,  
      B L N   (9) 
   L  is strain-displacement relation matrix  
   N  is interpolation function matrix. 

2.2 Tetrahedral Element 
The four-node tetrahedral element type [13] 

was used this study. The distribution of variables 
can be written as: 
  1 1 2 2 3 3 4 4N N N N N              (10) 
For 3D free vibration analysis, the displacement 
matrix can be written as: 
     N   (11) 
where 
  

T
u v w      (12) 

   1 1 1 4 4 4

T
u v w u v w      (13) 

  
1 4

1 4

1 4

0 0 0 0

0 0 0 0

0 0 0 0

N N

N N N

N N

 
 


 
  

 (14) 

 
3. Numerical Methods 

The procedure for solving derived FEM free 
vibration equations contains three steps: 

1. Transforming the set of equations into  
 standard-form matrix [14] 
2. Tridiagonalizing the equation matrix 
3. Determining eigenvalues and eigenvectors 
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Therefore, the procedure of free vibration analysis 
by FEM can be schematically shown in Fig. 1. 

 

Fig. 1 Procedure of FEM free vibration analysis 

3.1 FEM Equations in Standard Form 
Eq. (6) can be transformed into standard form 

of the eigenvalue problem as: 
       0A I      (15) 
where 2   and  I  is identity matrix. 
Mass matrix in Eq. (6) can be written as: 
     

T
M L L  (16) 

where  L  is a lower triangular matrix and can be 
determined using the Cholesky’s symmetric 
decomposition. 
Substituting Eq. (16) into Eq. (6) leads to: 

        0
T

K L L   
 

 (17) 

Premultiplying Eq. (17) with  
1

L
  and substituting: 

      
T

L 


  (18) 
into Eq. (17) leads to: 

         
1

0
T

L K L I 
   

 
 (19) 

Therefore,  A  of the standard form equation 
(Eq. (15)) for Eq. (6) is: 
       

1 T
A L K L

 
  (20) 

3.2  Tridiagonalization  
Tridiagonal matrix is a matrix which has only 

nonzero values on the main diagonal, and on the 
upper and lower subdiagonals. In FEM analysis 
for eigenvalue problems, it is common to 
transform matrices into the tridiagonal form. This 
leads to the reduction in computational effort 
required while the eigenvalues of the original 
matrices are still preserved. There are several 
methods for the matrix tridiagonalization operation. 
In this paper, we consider three methods 
including the Lanczos method, the Householder 
method and the block Lanczos method. 

3.2.1 The Lanczos Method 
The Lanczos algorithm was introduced by    

C. Lanczos in 1950 [15]. Lanczos intended his 
algorithm to be used for computing a few of the 
extreme eigenvalues and corresponding 
eigenvectors of a symmetric matrix. However, the 
algorithm was taken up as a method for reducing 
a symmetric matrix to tridiagonal form [16]. A real 
symmetric matrix can define corresponding 
Lanczos matrix using the recursion as shown in 
Eqs. (21) – (23): 
         1 1 1i i i i i i iv A v v v        (21) 

     
T

i i i
v A v   (22) 

     1 1

T

i i i
v A v  

  (23) 

where  
i

v  is a Lanczos vector,   and   are 
scalar values. 

The sequence started by letting  
1

v  be a 
unit starting vector (generally generated 
randomly). 

 

Start 

Read Input 

Compute [K] and [M] matrix 

Transform equation to standard form 

Tridiagonal matrix transformation 
 Lanczos 
 Householder 
 Block Lanczos 

Eigenproblem solving 

End Program 

or 

or 
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Define 1  = 0 and  
0

v  = 0. For 1,2,3,...,i j , 
the corresponding Lanczos matrix is define as the 
tridiagonal matrix with diagonal entries i  and 
subdiagonal entries i  as shown below: 

  

1 2

2 2 3

3

0

0

j

j j

j j

T

 

  



 

 

 
 
 
 
 
 
 
 

 (24) 

3.2.2 The Householder Method 
The householder method was introduced in 

1958 by A.S. Householder [17]. By applying a 
sequence of Householder reflection matrices, any 
symmetric matrix can be converted into 
tridiagonal form. Each sequence produces a 
complete row and column of zeros apart from the 
elements within the tridiagonal and subdiagonal. 
Householder reflection matrix can be written as: 
       2

T
H I u u   (25) 

where  u  is a unit vector: 

  
   

   

x y
u

x y





 (26) 

Vector  x contains all the off-diagonal 
entries of each column of matrix  A . Vector  y  
contains subdiagonal values of that column. For 
example, 

  1 21 31 10
T

nx a a a     (27) 
  1 10 0 0

T
y r     (28) 

where     1 1 1r x y   (29) 
The sequence is computed by: 

       
2 1 1

A H A H  

 

11 1

1 22 22 22

22 22 22

22 22 22

0 0

0

0

a r

r a a a

a a a

a a a

 
 
 
 
 
 
 
 

 (30) 

Thus, by a single Householder transformation, 
matrix  A  is converted into a similar matrix  

2
A  

whose first row and column are in tridiagonal form.  
By repeating the process on the lower right 
( 1) ( 1)n n    submatrix of  

2
A , the next matrix 

 
3

A  whose first two rows and columns are in 
tridiagonal form are constructed. The process is 
repeated until the final result is a tridiagonal 
matrix.  

3.2.3 The Block Lanczos Method 
The idea of the block Lanczos algorithm is to 

change  A  into a block tridiagonal matrix  J  
containing small square matrices on the diagonal 
and on the upper and lower subdiagonals, as 
shown in Eq. (31): 

  

   
   

1 1

1 2

1 1

1

0 0

0

0

0 0

T

T

p p

p p

D B

B D

J

D B

B D

 



 
 
 
 

  
    

    
 

        

 (31) 

From Eq. (31), to compute  iD  where 
1,2,...,i p , and jB 

   where 1,2,..., 1j p  , 
we can use the block Lanczos algorithm [8] 

3.3  Solvers for FEM Equations 
After tridiagonalization, the QL with implicit 

shift algorithm was used to solve the FEM 
equations. The QL algorithm decomposes the 
matrix  A  into a product of an orthogonal matrix 
 Q  and a lower triangular matrix  L . Therefore, 
the matrix  A  can be expressed as: 
 [ ] [ ] [ ]n n nA Q L  (32) 
Then calculate the new matrix  A  by switching 
the order of [ ]nQ  and [ ]nL  in Eq.(32): 
 1[ ] [ ] [ ]n n nA L Q   (33) 
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The sequence when n , [A]n+1 converges to 
a diagonal matrix which the eigenvalues appear 
on the diagonal. 

Convergence can be accelerated by using the 
shifting technique. The technique can also be 
improved to implicit shift to avoid the loss of 
accuracy for the small eigenvalues. 

 
4. Evaluation of the FEM Programs 

Three problems were chosen for the 
evaluation of the three FEM computer programs 
using different tridiagonalization methods, which 
are Lanczos, Householder and block Lanczos. 
Mode frequencies (eigenvalues) obtained from 
the FEM programs have been compared with 
those obtained from ANSYSTM and exact 
solutions (or experimental results).  

4.1 Solid Cube 
A solid cube is fixed at its base as shown in 

Fig. 2 [18]. Material properties of the solid cube 
are Young’s Modulus of 68.95  109 N/m2, 
Poisson’s ratio of 0.3 and density of 2,560 kg/m3. 

 
Fig. 2 Geometry of a solid cube 

The computational results from the three FEM 
computer programs (Lanczos, Householder and 
block Lanczos) were compared with those from 
ANSYS and exact solutions. Both ANSYS and the 
developed programs provide the vibration modes 
corresponding with exact solutions (dash line) as 
shown in Figs. 3-6. These figures show that the 

mode frequencies obtained from the developed 
FEM programs and ANSYS are closer to exact 
solutions when node number increases. 

For the solutions of mode frequency in mode 
1, Fig. 3 shows that the difference between the 
computational value and the exact solution is 
6.14% and 5.58% for ANSYS and the developed 
programs using 97 nodes, respectively. As node 
number increases, the computational solutions 
are closer to the exact solution. When using 
1,000 nodes, ANSYS and the developed 
programs give the results with only 0.08% and 
0.01% difference to the exact solution. 

2.10

2.15

2.20

2.25

2.30

2.35

2.40

            

2.3479 
(6.14%)

2.2728
(2.75%)

2.2259
(0.63%) 2.21 38

(0.08%)

2.3355 
(5.58%)

2.2663 
(2.46%)

2.22 31
(0.5%) 2.2118 

(-0.01%)

Fr
eq

u
en

cy
 (k

H
z)

Number of nodes

Mode 1

Ansys Lanzcos Householder Block Lanczos

Exact = 2.212

 
Fig. 3 Comparison of mode frequency values for 
mode 1 (swaying mode). The values above the 
columns are mode frequencies computed and 
differences with the exact solution are shown in 
parentheses. 

Figs. 4-6 show that the discrepancy between 
the computed results and the exact solution in 
modes 3 to 5 is less than 2% when using 1,000 
nodes. At 1,000 nodes, ANSYS and the 
developed FEM programs give very similar results 
(less than 0.5% difference). It is noted that 
solutions for mode 2 are not shown because 
there is no report of exact solution. 

The developed FEM programs using the 
Householder and Lanczos methods give 
eigenvalue results with some repetition in values. 

0.254 m 
0.254 m 

0.254 m 
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However, this is not a serious problem as users 
can ignore the repeated values. In contrast, Table 
1 shows that the developed FEM program using 
the Lanczos method provides some computed 
values which are significantly different to the 
repeated values. Note that these results from the 
Lanczos method are not used in the result 
comparisons in Figs. 3-6. 

2.60

2.80

3.00

3.20

3.40

3.60

3.80

            

3.6175
(19.78%)

3.3080 
(9.54%)

3.1945 
(3.37%)

3.1219 
(1.94%)

3.5469 
(17.45%)

3.2742 
(8.42%)

3.1080
(2.92%)

3.0687 
(1.61%)

Fr
eq

u
en

cy
 (k

H
z)

Number of nodes

Mode 3

Ansys Lanzcos Householder Block Lanczos

Exact = 3.020

 
Fig. 4 Comparison of mode frequency values for 

mode 3 (torsion mode) 

5.15

5.20
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5.30

5.35

5.40

            

5.3553 
(2.22%)

5.2856
(0.89%)

5.2400 
(0.02%)

5.2295
(-0.18%)

5.3335 
(1.80%)

5.2748 
(0.68%)

5.2350
(-0.08%)

5.2259 
(-0.25%)

Fr
eq

u
en

cy
 (k

H
z)
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Mode 4
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Exact = 5.239

 
Fig. 5 Comparison of mode frequency values for 

mode 4 (longitudinal mode) 
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6.4781 
(9.52%)

6.1607
(4.15%)

5.9435 
(0.48%)

5.8949 
(-0.34%)

6.3153 
(6.77%)

6.0849 
(2.87%)
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Fig. 6 Comparison of mode frequency values for 

mode 5 (swaying mode) 

Table. 1 All frequency values computed by the 
FEM program using the Lanczos method. The 
erroneous values are highlighted by yellow color. 
Modes 

Number of nodes 

67 97 236 423 651 1000 

1 2.437833 2.335490 2.266373 2.241599 2.223123 2.211758 

2 2.476365 2.342088 2.266373 2.241599 2.223123 2.211758 

3 3.829661 2.363350 2.276090 2.241599 2.223123 2.211758 

4 5.394683 3.546944 2.276090 2.249288 2.223123 2.211758 

5 6.564503 3.547507 3.274194 2.249288 2.228007 2.211758 

6  5.333476 3.274194 2.249288 2.228007 2.215306 

7  6.315265 3.286584 3.174731 2.228007 2.215306 

8   5.274799 3.174731 2.228007 2.215306 

9   5.274799 3.174731 3.108044 2.215306 

10   6.084888 5.250132 3.108044 2.215306 

11   6.084888 5.250132 3.108044 3.068655 

12    5.250132 3.108044 3.068655 

13    5.969032 3.111897 3.068655 

14    5.969032 5.235033 3.068655 

15     5.235033 3.068655 
16     5.235033 3.068655 

17     5.235033 5.225902 

18     5.910831 5.225902 
19     5.910831 5.225902 
20     5.910831 5.225902 

21      5.225902 

22      5.871402 
23      5.871402 
24      5.871402 
25      5.871402 

 

4.2 Cantilever Beam  
A cantilever beam is fixed at one side as 

shown in Fig. 7 [18]. Material properties of the 
cantilever beam are Young’s Modulus of 
2.068  1011 N/m2, Poisson’s ratio of 0.3 and 
density of 8,058 kg/m3. 

 
Fig. 7 Geometry of a cantilever beam 

Figs. 8-10 show the deformation modes of 
the cantilever beam which both ANSYS and the 
developed programs provide the vibration modes 
corresponding with exact solutions (dash line). 
For the mode frequencies show that the results 
obtained from the FEM programs developed in 

0.61 m 

0.3 m 

3.66 m 
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this work and ANSYS are closer to exact 
solutions when using more nodes. 

Fig. 8 shows that the difference between the 
computed mode frequency and the exact solution 
in mode 1 is 18.34% and 18.31% for ANSYS and 
the developed programs using 561 nodes, 
respectively. At 2,624 nodes, ANSYS and the 
developed programs give the results with only 
4.51% and 4.50% difference to the exact solution. 

18.0

19.0

20.0
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(18.34%)
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Fr
eq

u
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cy
 (k

H
z)

Number of nodes

Mode 1

Ansys Lanczos Householder Block Lanczos

 

x 
y 

z 

Exact = 18.6

 
Fig. 8 Comparison of mode frequency values for 

mode 1 (first bending in x direction) 

Figs. 9-10 show that the discrepancy between 
the computed result and the exact solution in 
modes 2 and 3 is only ~0.1% and ~1%, 
respectively, when using 2,624 nodes. At 2,624 
nodes, ANSYS and the developed FEM programs 
give very similar results (less than 0.04% 
difference). 
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u
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Fig. 9 Comparison of mode frequency values for 

mode 2 (first bending in y direction) 
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Fig. 10 Comparison of mode frequency values for 

mode 3 (second bending in x direction) 
 

4.3 Anvil  
An anvil is unconstrained as shown in Fig 11 

[19]. Material properties of the anvil are Young’s 
Modulus of 2.07  1011 N/m2, Poisson’s ratio of 
0.3 and density of 7,860 kg/m3. 

 
Fig. 11 Geometry of an anvil 

 

Figs. 12-15 show the deformation modes of 
the anvil which both ANSYS and the developed 
programs provide the vibration modes 
corresponding with experimental values (dash 
line). These figures show that the results obtained 
from the FEM programs developed in this work 
and ANSYS are closer to experimental values 
when node number increases. 

Fig. 12 shows that the difference between the 
computational value and the measured value in 
mode 1 is 16.72% and 15.94% for ANSYS and 
the developed programs using 489 nodes, 
respectively. At 2,461 nodes, ANSYS and the 
developed programs give the results with only 
~5% difference to the measured value. 

0.152 m 

0.461 m 

0.461 m 
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Figs. 13-15 show that the discrepancy 
between the computed result and the measured 
values in modes 2 to 4 is less than 5%, 
respectively, when using 2,461 nodes. At 2,461 
nodes, ANSYS and the developed FEM programs 
give very similar results (less than 0.5% 
difference). 
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Fig. 12 Comparison of mode frequency values for 

mode 1 (twist mode) 
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Fig. 13 Comparison of mode frequency values for 

mode 2 (saddle mode) 
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Fig. 14 Comparison of mode frequency values for 

mode 3 (umbrella mode) 
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Fig. 15 Comparison of mode frequency values for 

mode 4 (in-plane shear mode) 
 

5. Conclusions 
The development of 3D FEM computer 

software for free vibration analysis without 
damping have been demonstrated. The three 
FEM programs use three tridiagonalization 
methods, which are Lanczos, Householder and 
block Lanczos. The computational performances 
of the FEM computer programs have been 
evaluated by several problems. The results 
suggest that the Householder and the block 
Lanczos methods are more suitable for free 
vibration analysis than the Lanczos method. 
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